• Title/Summary/Keyword: 어절 정보

Search Result 378, Processing Time 0.024 seconds

Extracting High-Frequency Optimal Korean Word Set by Word Frequency Statistics (어절 빈도 조사에 의한 최적의 고빈도 어절 집합 추출)

  • Kang, Seung-Shik
    • Annual Conference on Human and Language Technology
    • /
    • 2001.10d
    • /
    • pp.85-88
    • /
    • 2001
  • 1500만, 700만, 10만 어절 크기의 세 가지 원시 말뭉치로부터 한국어 어절 빈도를 조사하였다. 각 말뭉치에 대한 어절 빈도 결과를 비교-분석하여 활용가치가 높은 고빈도 어절 집합을 구하였다. 고빈도 어절 집합의 효용성을 검증하기 위해 일반문서에 대한 어절 적중률을 실험하였다. 그 결과로 고빈도 563 어절이 24.5%, 9484 어절이 51.5%, 184246 어절이 81.6%의 어절 적중률을 보였다.

  • PDF

Improving Part-of-speech Tagging by using Resolution Information for Individual Ambiguous Word (어절별 중의성 해소 정보를 이용한 품사 태깅의 성능 향상)

  • Park, Hee-Geun;Seo, Young-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2007.10a
    • /
    • pp.134-139
    • /
    • 2007
  • 품사 태깅 시스템에서 규칙 정보와 통계 정보는 상호보완적으로 사용되어 품사 태깅의 성능을 향상시킨다. 하지만, 두 가지 정보로는 품사 태깅의 성능을 향상시키기에는 한계가 있다. 이에 본 논문에서는 어절별 중의성 해소 정보를 이용하여 품사 태깅 시스템의 정확률을 향상시키는 방법에 대해서 기술한다. 통계 정보는 21세기 세종계획의 천만 어절 균형 말뭉치와 태그 부착 말뭉치에서 추출한 trigram 형태의 중의성 어절 및 품사 태그열 출현 빈도 정보를 이용하여 구축하였고, 규칙 정보는 보조용언, 숙어, 관용적 표현 등을 이용하여 구축하였다. 어절별 중의성 해소 정보는 세종 천만 어절 균형 말뭉치의 중의성 어절에서 고빈도 상위 50%에 해당하는 어절을 대상으로 해당 어절의 의미정보와 문맥정보를 고려하여 구축되었고, 이것은 통계 정보를 이용한 품사 태깅 전에 적용되어 분석 후보를 줄여준다. 또한, 학습을 통하여 어절별 중의성 해소 정보를 수정 및 보강하여 잘못된 품사 태깅 결과를 보정해준다. 이와 같이 통계 정보와 규칙 정보를 이용한 품사 태깅 시스템에 고빈도 중의성 어절에 대한 어절별 중의성 해소 정보를 이용함으로써 품사 태깅의 성능을 향상시킬 수 있었다.

  • PDF

Spelling Correction in Korean Using the `Eojeol` generation Dictionary (어절 생성 사전을 이용한 한국어 철자 교정)

  • Lee, Yeong-Sin;Park, Yeong-Ja;Song, Man-Seok
    • The KIPS Transactions:PartB
    • /
    • v.8B no.1
    • /
    • pp.98-104
    • /
    • 2001
  • 본 논문에서는 어절 생성 사전을 이용한 한국어 철자 교정을 제안한다. 어절 생성 사전은 두 문자열 간 음절 특성이 고려된 편집 거리 계산을 기반으로 탐색되어 언어와 오류 유형에 의존적인 정보를 이용하지 않고 오류 어절에 대한 후보 어절을 생성한다. 또한 교정된 어절들의 가능한 형태소 분석들을 산출하여 후보들 간의 순위 계산 시에 재차 형태소 분석을 수행하지 않고 언어 정보를 적용할 수 있다. 본 논문에서 제안하는 철자 교정은 두 단계로 구성된다. 첫째, 오류 어절로부터 가능한 오류 정정 어간들을 계산한다. 둘째, 계산된 어간들로부터 어절 생성 사전을 탐색하여 원형 후보 어절들을 생성한다. 또한 품사 태깅과 공기 정보를 사용하여 오류 수정된 결과의 순위를 매긴다. 본 시스템의 자동 철자 교정 성능을 평가한 결과 3,000개의 어절에서 시험한 결과 단어 수준으로 93%가 옳게 교정되었다.

  • PDF

Classification and Normalization of Korean Numerals (한국어 수사어절의 유형 분류 및 정규화)

  • 강승식
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.187-189
    • /
    • 1999
  • 여러 가지 형태로 표현되는 수사어절을 아라비아 숫자로 구성된 표준형으로 변환하기 위하여 수사어절을 인식하는 알고리즘과 수사어절을 표준형으로 변환하는 수사어절 정규화 알고리즘을 제안한다. 띄어쓴 수사어절은 전처리 단계에서 수사어절 인식 알고리즘을 이용하여 한 어절로 결합한다.

  • PDF

Encoding of Morphological Analysis Result and Eojeol Dictionary Construction (형태소 분석 결과의 인코딩 기법과 어절 사전 구축)

  • Kang, Seung-Shik
    • Annual Conference on Human and Language Technology
    • /
    • 2004.10d
    • /
    • pp.112-117
    • /
    • 2004
  • 형태소 분석에서 사용되는 사전은 형태소와 품사 정보를 수록하고 있다. 단어가 한 개의 형태소로 구성되는 굴절어는 대부분의 단어가 어휘형태소의 기본형과 일치되기 때문에 형태소 분석 알고리즘은 사전 탐색과 형태론적 변형을 통해 입력 단어와 어휘형태소를 일치시키는 과정으로 기술된다. 이에 비해, 교착어는 입력 어절이 형태소 사전의 어휘형태소와 일치하지 않기 때문에 어절 자체가 형태소 사전에 포함되지 않아서 굴절어에 비해 상대적으로 형태소 분석 알고리즘의 복잡도가 높고 분석 시간이 오래 걸리는 단점이 있다. 본 논문에서는 고빈도 어절에 대한 기분석 어절 사전을 구축하여 형태소 분석 속도를 개선하고, 사용자가 어절 사전에 새로운 어절을 추가하거나 어절 사전에 수록된 분석 결과를 수정할 수 있는 어절 사전에 의한 형태소 분석 방법을 제안한다. 구체적인 방법론으로써 형태소 분석 결과를 저장하는 기분석 어절 사전의 크기를 최소화하기 위해 분석 결과를 생성하는데 필요한 최소한의 정보만을 인코딩하는 방법을 사용한다.

  • PDF

Real Time Recognition of Unknown Words based on the Analysis of Similar Words with an Extended Definition (확장 정의된 유사어절의 분석에 근거한 실시간 미등록어 인식)

  • Park, Bong-Rae;Hwang, Young-Sook;Rim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 1996.10a
    • /
    • pp.222-228
    • /
    • 1996
  • 기존의 미등록어 추정 방법은 대부분 단일 어절 접근 방법으로 단일 어절에서 추출할 수 있는 추정 정보가 부족하여 과분석과 오분석의 가능성이 높았다. 그래서 동일 미등록어를 가진 어절들을 동시에 분석하는 유사 어절 접근 방법이 제시되었다. 그러나 이 방법도 유사 어절의 범위를 조사나 어미만 다른 어절로 정의함으로써 수집될 수 있는 유사 어절의 수가 제한되어 대략의 텍스트에서만 적용이 가능하였다. 이에 본 논문은 유사어절을 동일 음절열을 공유하는 어절들로 확장 정의하여 작은 크기 N의 텍스트 윈도우에서 유사 어절의 발견 가능성을 높임으로써 실시간으로 미등록어를 추정할 수 있게 하는 방법을 제시한다. N을 100으로 한 실험결과는 미등록어 추정 정확도가 99.3%였고 재현율은 약 32%였다.

  • PDF

A Dynamic Link Model for Korean POS-Tagging (한국어 품사 태깅을 위한 다이내믹 링크 모델)

  • Hwang, Myeong-Jin;Kang, Mi-Young;Kwon, Hyuk-Chul
    • Annual Conference on Human and Language Technology
    • /
    • 2007.10a
    • /
    • pp.282-289
    • /
    • 2007
  • 통계를 이용한 품사 태깅에서는 자료부족 문제가 이슈가 된다. 한국어나 터키어와 같은 교착어는 어절(word)이 다수 형태소로 구성되어 있어서 자료부족 문제가 더 심각하다. 이러한 문제를 극복하고자 교착어 문장을 어절 열이 아니라 형태소의 열이라 가정한 연구도 있었으나, 어절 특성이 사라지기 때문에 파생에 의한 어절의 문법 범주 변화 등의 통계정보와 어절 간의 통계정보를 구하기 어렵다. 본 논문은 효율적인 어절 간 전이확률 계산 방법론을 고안함으로써 어절 단위의 정보를 유지하면서도 자료부족문제를 해결할 수 있는 확률 모델을 제안한다. 즉, 한국어의 형태통사적인 특성을 고려하면 앞 어절의 마지막 형태소와 함께 뒤 어절의 처음 혹은 끝 형태소-즉 두 개의 어절 간 전이 링크만으로도 어절 간 전이확률 계산 시 필요한 대부분 정보를 얻을 수 있고, 문맥에 따라 두 링크 중 하나만 필요하다는 관찰을 토대로 규칙을 이용해 두전이링크 중 하나를 선택해 전이확률 계산에 사용하는 '다이내믹 링크 모델'을 제안한다. 형태소 품사 bi-gram만을 사용하는 이 모델은 실험 말뭉치에 대해 96.60%의 정확도를 보인다. 이는 같은 말뭉치에 대해 형태소 품사 tri-gram 등의 더 많은 문맥 정보를 사용하는 다른 모델을 평가했을 때와 대등한 성능이다.

  • PDF

The Postprocessing of a Korean OCR using the Output of the Word Recognition and the Statistical Information from a Corpus (문자 인식기의 특성과 말뭉치의 통계 정보를 이용한 문자 인식 결과의 후처리)

  • Son, Hoon-Seok;Choi, Sung-Pil;Kwon, Hyuk-Chul
    • Annual Conference on Human and Language Technology
    • /
    • 1997.10a
    • /
    • pp.188-193
    • /
    • 1997
  • 한국어 문자 인식 후처리는 인식기가 제공하는 후보 음절을 바탕으로 후처리를 하였다. 이 논문은 문자 인식기가 제공하는 후보 음절 대신에 인식기의 인식 결과를 분석하여 인식기의 오인식 통계 정보에 따라 인식 결과 음절의 후보 음절을 생성한다. 여기서 생성된 후보 어절을 각 음절의 확률 값을 이용하여 확률이 가장 놓은 어절을 선택한다. 이때 한국어 대용량 말뭉치에서 추출한 어절의 통계정보를 이용하여 그 어절의 확률 값을 구한다. 이 기법의 장점은 후보 음절의 조합으로 생성된 어절의 확률 값과 그 어절의 말뭉치상의 확률 값을 이용한 결과 말뭉치에 포함된 미등록어 정보에 따라 형태소 분석이 되지 않는 미등록어 처리가 가능하다. 또한 후보 어절 중 형태소 분석이 성공하는 어절이 두개 이상 있을 경우 실제 거의 쓰이지는 않지만 단지 음절의 확률 값이 높아 우선으로 선택되는 경우를 방지하였다. 실험은 약 1,000page 분량의 실험을 통해 오인식 결과를 수집하고, 4000만 원시 말뭉치에서 구한 어절의 통계정보를 이용하였다. 그 결과 문자 인식기의 98.05%의 어절 인식률을 후처리 결과 99.52%로 향상시켰다.

  • PDF

A Stochastic Word-Spacing System Based on Word Category-Pattern (어절 내의 형태소 범주 패턴에 기반한 통계적 자동 띄어쓰기 시스템)

  • Kang, Mi-Young;Jung, Sung-Won;Kwon, Hyuk-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.11
    • /
    • pp.965-978
    • /
    • 2006
  • This paper implements an automatic Korean word-spacing system based on word-recognition using morpheme unigrams and the pattern that the categories of those morpheme unigrams share within a candidate word. Although previous work on Korean word-spacing models has produced the advantages of easy construction and time efficiency, there still remain problems, such as data sparseness and critical memory size, which arise from the morpho-typological characteristics of Korean. In order to cope with both problems, our implementation uses the stochastic information of morpheme unigrams, and their category patterns, instead of word unigrams. A word's probability in a sentence is obtained based on morpheme probability and the weight for the morpheme's category within the category pattern of the candidate word. The category weights are trained so as to minimize the error means between the observed probabilities of words and those estimated by words' individual-morphemes' probabilities weighted according to their categories' powers in a given word's category pattern.

Improving Korean Word-Spacing System Using Stochastic Information (통계 정보를 이용한 한국어 자동 띄어쓰기 시스템의 성능 개선)

  • 최성자;강미영;권혁철
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.883-885
    • /
    • 2004
  • 본 논문은 대용량 말뭉치로부터 어절 unigram과 음절 bigram 통계 정보를 추출하여 구축한 한국어 자동 띄어쓰기 시스템의 성능을 개선하는 방법을 제안한다 어절 통계를 주로 이용하는 기법으로 한국어 문서를 처리할 때, 한국어의 교착어적인 특성으로 인해 자료부족 문제가 발생한다 이물 극복하기 위해서 본 논문은 음절 bigram간 띄어쓸 확률 정보를 이용함으로써 어절로 인식 가능한 추가의 후보 어절을 추정하는 방법을 제안한다. 이와 글이 개선된 시스템의 성능을 다양한 실험 데이터를 사용하여 평가한 결과, 평균 93.76%의 어절 단위 정확도를 얻었다.

  • PDF