• Title/Summary/Keyword: 어업 기술

Search Result 2,681, Processing Time 0.017 seconds

Fish Stock Assessment by Hydroacoustic Methods and its Applications - I - Estimation of Fish School Target Strength - (음향에 의한 어족생물의 자원조사 연구 - I - 어군반사강도의 추정 -)

  • Lee, Dae-Jae;Shin, Hyeong-Il;Shin, Hyong-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.2
    • /
    • pp.142-152
    • /
    • 1995
  • The combined bottom trawl and hydroacoustic survey was conducted by using the training ship Oshoro Maru belong to Hokkaido University in November 1989-1992 and the training ship Nagasaki Maru belong to Nagasaki University in April 1994 in the East China Sea, respectively. The aim of the investigations was to collect the target strength data of fish school in relation to the biomass estimation of fish in the survey area. The hydroacoustic survey was performed by using the scientific echo sounder system operating at three frequencies of 25, 50 and 100kHz with a microcomputer-based echo integrator. Fish samples were collected by bottom trawling and during the trawl surveys, the openings of otter board and net mouth were measured. The target strength of fish school was estimated from the relationship between the volume back scattering strength for the depth strata of bottom trawling and the weight per unit volume of trawl catches. A portion of the trawl catches preserved in frozon condition on board, the target strength measurements for the defrosted samples of ten species were conducted in the laboratory tank, and the relationship between target strength and fish weight was examined. In order to investigate the effect of swimbladder on target strength, the volume of the swimbladder of white croaker, Argyrosomus argentatus, sampled by bottom trawling was measured by directly removing the gas in the swimbladder with a syringe on board. The results obtained can be summarized as follows: 1.The relationship between the mean volume back scattering strength (, dB) for the depth strata of trawl hauls and the weight(C, $kg/\textrm{m}^3$) per unit volume of trawl catches were expressed by the following equations : 25kHz : = - 29.8+10Log(C) 50kHz : = - 32.4+10Log(C) 100kHz : = - 31.7+10Log(C) The mean target strength estimates for three frequencies of 25, 50 and 100 kHz derived from these equations were -29.8dB/kg, -32.4dB/kg and -31.7dB/kg, respectively. 2. The relationship between target strength and body weight for the fish samples of ten species collected by trawl surveys were expressed by the following equations : 25kHz : TS = - 34.0+10Log($W^{\frac{2}{3}}$) 100kHz : TS = - 37.8+10Log($W^{\frac{2}{3}}$) The mean target strength estimates for two frequencies of 25 and 100 kHz derived from these equations were -34.0dB/kg, -37.8dB/kg, respectively. 3. The representative target strength values for demersal fish populations of the East China Sea at two frequencies of 25 and 100 kHz were estimated to be -31.4dB/kg, -33.8dB/kg, respectively. 4. The ratio of the equivalent radius of swimbladder to body length of white croaker was 0.089 and the volume of swimbladder was estimated to be approximately 10% of total body volume.

  • PDF