• Title/Summary/Keyword: 어닐링온도

Search Result 81, Processing Time 0.025 seconds

Thermochromic VV$_{1-x}$ Sn$_{x}$O$_2$Thin Films by Reactive E-beam Evaporation (반응성 전자빔 방법에 의한 써모크로믹 V$_{1-x}$ Sn$_{x}$O$_2$박막)

  • Kim, Myoung-Geun;Lee, Moon-Hee
    • Korean Journal of Materials Research
    • /
    • v.5 no.7
    • /
    • pp.850-857
    • /
    • 1995
  • VO$_{x}$ and V$_{1-x}$ Sn$_{x}$O$_2$thin films were fabricated on a glass under various $O_2$pressure by reactive e-beam evaporation method. Thermochromism and transition temperatures of these thin films were examined by measuring spectral solar transmittances with spectrophotometer at various temperatures, and their stoichiometries were analyzed by RBS. Oxygen pressure of 5$\times$10$^{-5}$ . Torr was found to be optimum to fabricate near stoichiometric VO$_2$thin film by reactive e-beam evaporation. Rapid thermal annealing(RTA) was adopted to crystallize the thin films and annealing at 40$0^{\circ}C$ ~45$0^{\circ}C$ for 20 ~ 30 seconds was found to be the optimum annealing condition for the crystallization of VO$_2$thin film of 100nm-300nm thickness. 1~6 atomic percent of Sn was doped into VO$_2$thin films to fabricate V$_{1-x}$ Sn$_{x}$O$_2$thin films. These V$_{1-x}$ Sn$_{x}$O$_2$thin films showed distinct thermochromism and significantly higher transition temperatures than VO$_2$thin film.

  • PDF

Relationship Between Annealing Temperature and Structural Properties of BaTiO3 Thin Films Grown on p-Si Substrates (p-Si 기판에 성장한 BaTiO3 박막의 어닐링온도와 구조적 특성과의 관계)

  • Min, Ki-Deuk;Kim, Dong-Jin;Lee, Jong-Won;Park, In-Yong;Kim, Kyu-Jin
    • Korean Journal of Materials Research
    • /
    • v.18 no.4
    • /
    • pp.222-227
    • /
    • 2008
  • In this study, $BaTiO_3$ thin films were grown by RF-magnetron sputtering, and the effects of a post-annealing process on the structural characteristics of the $BaTiO_3$ thin films were investigated. For the crystallization of the grown thin films, post-annealing was carried out in air at an annealing temperature that varied from $500-1000^{\circ}C$. XRD results showed that the highest crystal quality was obtained from the samples annealed at $600-700^{\circ}C$. From the SEM analysis, no crystal grains were observed after annealing at temperatures ranging from 500 to $600^{\circ}C$; and 80 nm grains were obtained at $700^{\circ}C$. The surface roughness of the $BaTiO_3$ thin films from AFM measurements and the crystal quality from Raman analysis also showed that the optimum annealing temperature was $700^{\circ}C$. XPS results demonstrated that the binding energy of each element of the thin-film-type $BaTiO_3$ in this study shifted with the annealing temperature. Additionally, a Ti-rich phenomenon was observed for samples annealed at $1000^{\circ}C$. Depth-profiling analysis through a GDS (glow discharge spectrometer) showed that a stoichiometric composition could be obtained when the annealing temperature was in the range of 500 to $700^{\circ}C$. All of the results obtained in this study clearly demonstrate that an annealing temperature of $700^{\circ}C$ results in optimal structural properties of $BaTiO_3$ thin films in terms of their crystal quality, surface roughness, and composition.

Development of forest carbon optimization program using simulated annealing heuristic algorithm (Simulated Annealing 휴리스틱 기법을 이용한 임분탄소 최적화 프로그램의 개발)

  • Jeon, Eo-Jin;Kim, Young-Hwan;Park, Ji-Hoon;Kim, Man-Pil
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.12
    • /
    • pp.197-205
    • /
    • 2013
  • In this study, we developed a program of optimizing stand-level carbon stock using a stand-level yield model and the Simulated Annealing (SA) heuristic method to derive a optimized forest treatment solution. The SA is one of the heuristic algorithms that can provide a desirable management solution when dealing with various management purposes. The SA heuristic algorithm applied 'thermal equilibrium test', a thresholds approach to solve the phenomenon that does not find an optimum solution and stays at a local optimum value during the process. We conducted a sensitivity test for the temperature reduction rate, the major parameter of the thermal equilibrium test, to analyze its influence on the objective function value and the total iteration of the optimization process. Using the developed program, three scenarios were compared: a common treatment in forestry (baseline), the optimized solution of maximizing the amount of harvest(alternative 1), and the optimized solution of maximizing the amount of carbon stocks(alternative 2). As the results, we found that the alternative 1 showed provide acceptable solutions for the objectives. From the sensitivity test, we found that the objective function value and the total iteration of the process can be significantly influenced by the temperature reduction rate. The developed program will be practically used for optimizing stand-level carbon stock and developing optimized treatment solutions.

Analysis of High Temperature Deformation Stability and Properties of Duplex Stainless Steels According to Annealing Temperature (듀플렉스 스테인레스 소재의 고온 변형 안정성 및 어닐링 온도에 따른 특성 분석)

  • Kwon, Gi Hyoun;Na, Young-Sang;Yoo, Wee-Do;Lee, Jong-Hoon;Park, Yong-Ho
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.7
    • /
    • pp.495-502
    • /
    • 2012
  • The aim of this study was to analyze high temperature deformation stability and properties of duplex stainless steels(DSS) according to annealing temperature. In order to analyze high temperature deformation stability, a number of compression tests were carried out with a stain rate of $10^{-2}s^{-1}{\sim}10s^{-1}$ up to a compression ratio of 50% in a temperature range of $950^{\circ}C-1300^{\circ}C$. The analysis of high temperature deformation stability of DSS was performed based on the Ziegler model. In order to analyze the high temperature properties of DSS, annealing treatments were conducted by isothermal holding for 1 hr at $950^{\circ}C$ to $1300^{\circ}C$ with $50^{\circ}C$ intervals followed by water cooling. The hardness and tensile tests were performed on specimens with different volume fractions of constituent phases, such as austenite, ferrite and sigma. The hardness and tensile strength of 2507 according to the annealing temperature are better than those of 2205. The strain rate sensitivity and Ziegler parameter are higher in 2205 than in 2507 as a whole, which implies that 2205 is better than 2507 in terms of forgeability at high temperature.

Electrical Characteristics and Deep Level Traps of 4H-SiC MPS Diodes with Different Barrier Heights (전위 장벽에 따른 4H-SiC MPS 소자의 전기적 특성과 깊은 준위 결함)

  • Byun, Dong-Wook;Lee, Hyung-Jin;Lee, Hee-Jae;Lee, Geon-Hee;Shin, Myeong-Cheol;Koo, Sang-Mo
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.306-312
    • /
    • 2022
  • We investigated electrical properties and deep level traps in 4H-SiC merged PiN Schottky (MPS) diodes with different barrier heights by different PN ratios and metallization annealing temperatures. The barrier heights of MPS diodes were obtained in IV and CV characteristics. The leakage current increased with the lowering barrier height, resulting in 10 times larger current. Additionally, the deep level traps (Z1/2 and RD1/2) were revealed by deep level transient spectroscopy (DLTS) measurement in four MPS diodes. Based on DLTS results, the trap energy levels were found to be shallow level by 22~28% with lower barrier height It could confirm the dependence of the defect level and concentration determined by DLTS on the Schottky barrier height and may lead to incorrect results regarding deep level trap parameters with small barrier heights.

PBAT Compound Films with Improved Hydrolysis Resistance and its Application (내가수분해성이 향상 된 PBAT의 컴파운드 필름 및 이의 응용)

  • Sim, Jae-Ho;Shim, Jae-Hoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.553-559
    • /
    • 2022
  • The film mulching technology is useful for controlling soil temperature and moisture by covering the soil surface, and for suppressing weeds. In this study, in order to improve the hydrolysis resistance and mechanical properties of the biodegradable mulching film, PBAT(Poly butylene adipate-co-terephthalate) and PLA(Poly lactic acid) were modified using a twin-screw extruder and then the physical and biodegradable properties of the film were investigated. After landfill the mulching film in soil, the weight reduction of the film was confirmed by period, and plant growth was observed after mulching in the dry paddy field for rice farming. Mulching films with improved hydrolysis resistance showed excellent crop growth properties, and biodegradable mulching films can offer potential as a new alternative for environmentally friendly, efficient and sustainable agricultural practices.

Effect of Cu Content and Annealing Temperature on the Shape Memory Effect of NiTi-based Alloy (구리함량과 어닐링 온도가 NiTi 합금의 형상기억효과에 미치는 영향)

  • Hyeok-Jin Yang;Hyeong Ju Mun;Ye-Seul Cho;Jun-Hong Park;Hyun-Jun Youn;In-Chul Choi;Myung-Hoon Oh
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.2
    • /
    • pp.79-85
    • /
    • 2024
  • The effects of annealing heat treatment and the addition of Cu element on the shape memory effect of the NiTi-based alloy were investigated by analyzing differential scanning calorimeter results and characterizing recovery rate through 3D scanning after Vickers hardness test. Through 3D scanning of impressions after Vickers hardness test, the strain recovery rates for specimens without annealing treatment and annealed specimens at 400, 450, and 500℃ were measured as 45.96%, 46.76%, 52.37%, and 43.57%, respectively. This is because as the annealing temperature increases, both B19' and NiTi2 phases, which can impede martensitic transformation, are incorporated within the NiTi matrix. Particularly, additional phase transformation from R-phase to B19' observed in specimens annealed at 400 and 450℃ significantly contributes to the improvement in strain recovery rates. Additionally, the results regarding the Cu element content indicate that when the total content of Ni and Cu is below 49.6 at.%, the precipitation of fine B19' and NiTi2 phases within the matrix can greatly influence the transformation enthalpy and temperature range, resulting in relatively lower strain recovery rates in NiTi alloys with a small amount of Cu element produced in this study.

Effects of Annealing Temperature on Interface Properties for Al/Mild Steel Clad Materials (어닐링 온도 변화가 Al/연강 클래드재의 계면 특성에 미치는 영향)

  • Jeong, Eun-Wook;Kim, Hoi-Bong;Kim, Dong-Yong;Kim, Min-Jung;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.22 no.11
    • /
    • pp.591-597
    • /
    • 2012
  • For heat exchanger applications, 2-ply clad materials were fabricated by rolling of aluminum (Al) and mild steel sheets. Effects of annealing temperature on interface properties, especially on inter-layer formation and softening of strain hardened mild-steel, for Al/mild steel clad materials, were investigated. To obtain optimum annealing conditions for the Al/mild steel clad materials, annealing temperature was varied from room temperature to $600^{\circ}C$. At the annealing temperature about $450^{\circ}C$, an inter-layer was formed in an island-shape at the interface of the Al/mild steel clad materials; this island expanded along the interface at higher temperature. By analyzing the X-ray diffraction (XRD) peaks and the energy dispersive X-ray spectroscopy (EDX) results, it was determined that the exact chemical stoichiometry for the inter-layer was that of $Fe_2Al_5$. In some samples, an X-layer was formed between the Al and the inter-layer of $Fe_2Al_5$ at high annealing temperature of around $550^{\circ}C$. The existence of an X-layer enhanced the growth of the inter-layer, which resulted in the delamination of the Al/mild-steel clad materials. Hardness tests were also performed to examine the influence of the annealing temperature on the cold deformability, which is a very important property for the deep drawing process of clad materials. The hardness value of mild steel gradually decreased with increasing annealing temperature. Especially, the value of hardness sharply decreased in the temperature range between $525^{\circ}C$ and $550^{\circ}C$. From these results, we can conclude that the optimum annealing temperature is around $550^{\circ}C$ under condition of there being no X-layer creation.

Study on Isothermal Crystallization Characteristics of PLA Film by Adding APP as a Nucleation Agent (APP 핵제를 첨가한 PLA 필름의 등온결정화 특성에 관한 연구)

  • Kim, Gyu-Sun;Kim, Moon-Sun;Kim, Byung-Woo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.582-587
    • /
    • 2012
  • In this paper, it was studied on the crystallization characteristics of PLA film by adding ammonium phosphate (APP) as a nucleation agent. Crystallinity and crystallite size of PLA film were determined by Scherrer equation. Crystallization rate constant of PLA film was calculated through Avrami equation. Film samples in the study were prepared by two steps. PLA films were prepared by adding 1, 5, and 10 wt%, respectively, at first and was secondly annealed at 130, 140, and $150^{\circ}C$. Crystallinity of pure PLA film was average 4.6% and those of PLA film with adding 1, 5, and 10 wt% APP were 12.2, 47.7, and 50.0%, respectively. Crystallite size of PLA film was average 28.0 nm and those of PLA film with adding 1, 5, and 10 wt% APP were 26.8, 24.0, and 19.0 nm, respectively. Crystallization rate constants of PLA film with 1 wt% APP were 2.12, 3.86, and 0.27 by annealing at 130, 140, and $150^{\circ}C$, respectively, where was higher than pure PLA film and those with adding 5 and 10 wt% APP, respectively.

A Study of Thermo-Mechanical Analysis for the Design of High Pressure Piping System for Natural Gas Fuel Vessel (천연가스 연료선박의 고압 이중 배관 설계를 위한 열-구조 해석에 관한 연구)

  • Park, Seong-Bo;Sim, Myung-Ji;Kim, Myung-Soo;Kim, Jeong-Hyeon;Lee, Jae-Myung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.425-431
    • /
    • 2015
  • LNG (liquefied natural gas) is considered the best alternative eco-fuel, and many studies on the LNG fuel system have been performed to use LNG as the fuel for ships. For the LNG fuel supply system, natural gas transfers from the vaporizer to the engine in the gaseous state with a temperature of $50^{\circ}C$ and a pressure of 35MPa. Therefore, a structural safety evaluation of the double-walled pipelines considering thermal load is essential. In this article, an uniaxial tensile test for super duplex stainless steel, material for double-walled pipe, according to the annealing time was carried out to analyze the thermal effect. In addition, thermo-structural analysis of the high temperature-high pressure double-walled pipe with fixed supports that are now used widely was carried out to evaluate the structural safety. To minimize stress concentration of the connection point between the support and inner pipe, the shapes of the new type support that can slip through inner pipe were proposed, and the supports which has best structural performance was selected using the results from the thermo-structural analyses of new supports and an analysis of the whole double-walled pipeline was performed to ensure structural safety. These results can be used as a database for the design of double-walled pipelines and sliding support.