• Title/Summary/Keyword: 양전자방출컴퓨터단층촬영

Search Result 16, Processing Time 0.02 seconds

Prediction of pathological complete response in rectal cancer using 3D tumor PET image (3차원 종양 PET 영상을 이용한 직장암 치료반응 예측)

  • Jinyu Yang;Kangsan Kim;Ui-sup Shin;Sang-Keun Woo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.63-65
    • /
    • 2023
  • 본 논문에서는 FDG-PET 영상을 사용하는 딥러닝 네트워크를 이용하여 직장암 환자의 치료 후 완치를 예측하는 연구를 수행하였다. 직장암은 흔한 악성 종양 중 하나이지만 병리학적으로 완전하게 치료되는 가능성이 매우 낮아, 치료 후의 반응을 예측하고 적절한 치료 방법을 선택하는 것이 중요하다. 따라서 본 연구에서는 FDG-PET 영상에 합성곱 신경망(CNN)모델을 활용하여 딥러닝 네트워크를 구축하고 직장암 환자의 치료반응을 예측하는 연구를 진행하였다. 116명의 직장암 환자의 FDG-PET 영상을 획득하였다. 대상군은 2cm 이상의 종양 크기를 가지는 환자를 대상으로 하였으며 치료 후 완치된 환자는 21명이었다. FDG-PET 영상은 전신 영역과 종양 영역으로 나누어 평가하였다. 딥러닝 네트워크는 2차원 및 3차원 영상입력에 대한 CNN 모델로 구성되었다. 학습된 CNN 모델을 사용하여 직장암의 치료 후 완치를 예측하는 성능을 평가하였다. 학습 결과에서 평균 정확도와 정밀도는 각각 0.854와 0.905로 나타났으며, 모든 CNN 모델과 영상 영역에 따른 성능을 보였다. 테스트 결과에서는 3차원 CNN 모델과 종양 영역만을 이용한 네트워크에서 정확도가 높게 평가됨을 확인하였다. 본 연구에서는 CNN 모델의 입력 영상에 따른 차이와 영상 영역에 따른 딥러닝 네트워크의 성능을 평가하였으며 딥러닝 네트워크 모델을 통해 직장암 치료반응을 예측하고 적절한 치료 방향 결정에 도움이 될 것으로 기대한다.

  • PDF

Diagnostic Approach to a Soft Tissue Mass (연부조직 종양의 진단적 접근)

  • Chun, Young Soo;Song, Seung Hyun
    • Journal of the Korean Orthopaedic Association
    • /
    • v.54 no.4
    • /
    • pp.293-301
    • /
    • 2019
  • Soft tissue masses of the extremities and torso are a common problem encountered by orthopaedic surgeons. Although these soft tissue masses are often benign, orthopaedic surgeons need to recognize the key features differentiating benign and malignant masses. An understanding of the epidemiology and clinical presentation of soft tissue masses is needed to develop a practical approach for evaluation and surgical management. Size and depth are the two most important factors on which triage decisions should be based. In a differential diagnosis of a tumor, it is important to know the characteristics of the soft tissue mass through detailed history taking and physical examinations before the diagnostic procedures. A variety of imaging studies, such as simple radiography, ultrasound, magnetic resonance imaging, positron emission tomography, computed tomography, bone scan, and angiography can be used to diagnose tumors. Know the ledge of advantages and disadvantages of each imaging study is essential for confirming the characteristics of the tumor that can be observed in the image. In particular, ultrasonography is convenient because it can be performed easily in an outpatient clinic and its cost is lower than other image studies. On the other hand, the accuracy of the test is affected by the skill of the examiner. A biopsy should be performed to confirm the tumor and be performed after all imaging studies have been done but before the final treatment of soft tissue tumors. When a biopsy is to be performed, careful attention to detail with respect to multidisciplinary coordination beforehand, cautious execution of the procedure to minimize complications, and expedient follow-up and referral to a musculoskeletal oncologist when appropriate, are essential.

Radiation Safety Management Guidelines for PET-CT: Focus on Behavior and Environment (PET-CT의 방사선안전관리 가이드라인 개발: 행위와 환경을 중심으로)

  • Jung, Jin-Wook;Han, Eun-Ok
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.3
    • /
    • pp.140-147
    • /
    • 2011
  • Our purpose is to specify behavior and environmental factors aimed at reducing the exposed dosage caused by PET-CT and to develop radiation safety management guidelines adequate for domestic circumstances. We have used a multistep-multimethod as the methodological approach to design and to carry out the research both in quality and quantity, including an analysis on previous studies, professional consultations and a survey. The survey includes responses from 139 practitioners in charged of 109 PET-CTs installed throughout Korea(reported by the Korean Society of Nuclear Medicine, 2010). The research use 156 questions using Cronbach's ${\alpha}$ (alpha) coefficients which were: 0.818 for "the necessity of setting and installing the radiation protective environment"; 0.916 for "the necessity of radiation protection", "setting and installing the radiation protective environment"; and 0.885 for "radiation protection". The check list, derived from the radiation safety management guidelines focused on behavior and environment, was composed of 20 items for the radiation protective environment: including 5 items for the patient; 4 items for the guardian; 3 items for the radiologist; and 8 items applied to everyone involved; for a total of 26 items for the radiation protective behavior including: 12 items for the patient; 1 item for the guardian, 7 items for the radiologist; and 6 items applied to everyone involved. The specific check list is shown in(Table 5-6). Since our country has no safety management guidelines of its own to reduce the exposed dosage caused by PET-CTs, we believe the guidelines developed through this study means great deal to the field as it is not only appropriate for domestic circumstances, but also contains specific check lists for each target who may be exposed to radiation in regards to behavior and environment.

Examination about Utility of Prone Position in PET/CT of Stomach Cancer Patient (위암 환자의 양전자 방출 컴퓨터 단층 검사에서 복와위(伏臥位) 촬영의 유용성에 대한 연구)

  • NamKoong, Hyuk;Park, Hoon-Hee;Oh, Shin-Hyun;Bahn, Yung-Kag;Kim, Jung-Yul;Lim, Han-Sang;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.93-99
    • /
    • 2010
  • Purpose: Currently, PET/CT scan has been known to provide useful information to both preoperative and postoperative examination of cancer patients. Contracted stomach by the long fasting could cause difficulties of interpretation because of its size on reconstructed image data. To solve this problem, after the whole body PET/CT scan, patients were administrated in drinking 300 mL of water to expand stomach and performed additional scan on stomach region. Not only PET/CT scan but also CT performs this water-administration, and patients were take oral solution to make stomach expand for stomach cancer. When this scan performed, patients lay supine position. In this study, we evaluated the capacity of stomach through PET/CT scan with drinking water performed in supine and prone position so that we can distinguish exact location of cancer around pylorus and inferior wall of stomach. Furthermore, image data from supine and prone positions were analyzed the difference of volume of stomach through the change of standardized uptake values. Materials and Methods: From July 2009 to January 2010 in severance hospital, 30 patients who were diagnosed as early gastric cancer or advanced gastric cancer were chosen. All patients had PET/CT scan before the operation and have had follow-up PET/CT. The patients fast for at least 8 hours, and had an injection intravenously with $^{18}F$-FDG, 7.4 MBq (0.2 mCi/kg) per kilogram. They were rested for 60 minutes. Before the examination, all patients were administrated to drink water for 300 mL Patients had PET/CT scan with supine position around the region of stomach, whole body, and around the region of stomach with prone position after drinking another 300 mL of water respectively. Results: As a results of comparison between stomach capacity of 30 patients in supine and prone position, the study draw results that average capacity of stomach body was 460.29 $mm^2$ in supine position, and 641.39 $mm^2$ in prone position for 30 patients. The change of capacity shows 41.3% expanded in prone position. And there was no noticeable difference at maximum standardized uptake values in supine position and prone position. Conclusion: As results, stomach would have more expanded capacity in prone position than supine position. For patients who have physical disabilities to move freely, additional scan in prone position will be obstacle to perform. However, if additional scan in supine position add with the scan in prone position, it will be easier to diagnose stomach cancer. Moreover, we believe that this study will help the research for inventing support tools for patients who have physical disabilities in prone position.

  • PDF

Usefulness of $^{18}F$-Fluoride PET/CT in Bone Metastasis of Prostate Cancer (전립선암 환자의 뼈 전이에 대한 $^{18}F$-Fluoride PET/CT의 유용성)

  • Park, Min-Soo;Kim, Jung-Yul;Park, Hoon-Hee;Kang, Chun-Goo;Lim, Han-Sang;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.3
    • /
    • pp.24-30
    • /
    • 2009
  • Purpose: Today, Prostate cancer has been gradually increasing, according to the change of internal incidence rate of cancer. Generally, prostate cancer has lead to dead over 90%, in case of metastasis of lymph node and bone. So, innovative development of new radiopharmaceutical and imaging modality is progressed for detection of that metastasis, in nuclear medicine, now. Therefore, this study shows the usefulness of $^{18}F$-Fluoride PET/CT improved diagnosability on bone metastasis of prostate cancer. Materials and Methods: In this study, 33 male patients with prostate cancer were examined (The mean age: $67.8{\pm}10.2$ years old). Every patient was done each whole body bone scan (WBBS) and $^{18}F$-Fluoride positron emission tomography/computed tomography ($^{18}F$-Fluoride PET/CT). And then, using Receiver Operating Characteristic Curve (ROC curve), each sensitivity and specificity of two modalities was measured and compared with. Results: In 22 patients (66.6%) of all, bone metastasis was detected. And, in WBBS, sensitivity was 63.6%, specificity, 81.8%; in $^{18}F$-Fluoride PET/CT, sensitivity was 100% and specificity was 90.9%. As a result of ROC curve, AUROC (The Area under an ROC) of WBBS was 0.778, and that of $^{18}F$-Fluoride PET/CT, 0.942. Conclusions: $^{18}F$-Fluoride PET/CT was higher both sensitivity and specificity than WBBS, and it was valuable to detect bone metastasis of prostate cancer more definitely, with 3D imaging realization. Also, in $^{18}F$-Fluoride PET/CT, physiological images were acquired in more short time than WBBS, so, it was possible to reduce patient's waiting time and complaint. Therefore, it is considered that $^{18}F$-Fluoride PET/CT is able to improve diagnosability by offering more accurate images, as cuts in a share of high cost.

  • PDF

A Refined Method for Quantification of Myocardial Blood Flow using N-13 Ammonia and Dynamic PET (N-13 암모니아와 양전자방출단층촬영 동적영상을 이용하여 심근혈류량을 정량화하는 새로운 방법 개발에 관한 연구)

  • Kim, Joon-Young;Lee, Kyung-Han;Kim, Sang-Eun;Choe, Yearn-Seong;Ju, Hee-Kyung;Kim, Yong-Jin;Kim, Byung-Tae;Choi, Yong
    • The Korean Journal of Nuclear Medicine
    • /
    • v.31 no.1
    • /
    • pp.73-82
    • /
    • 1997
  • Regional myocardial blood flow (rMBF) can be noninvasively quantified using N-13 ammonia and dynamic positron emission tomography (PET). The quantitative accuracy of the rMBF values, however, is affected by the distortion of myocardial PET images caused by finite PET image resolution and cardiac motion. Although different methods have been developed to correct the distortion typically classified as partial volume effect and spillover, the methods are too complex to employ in a routine clinical environment. We have developed a refined method incorporating a geometric model of the volume representation of a region-of-interest (ROI) into the two-compartment N-13 ammonia model. In the refined model, partial volume effect and spillover are conveniently corrected by an additional parameter in the mathematical model. To examine the accuracy of this approach, studies were performed in 9 coronary artery disease patients. Dynamic transaxial images (16 frames) were acquired with a GE $Advance^{TM}$ PET scanner simultaneous with intravenous injection of 20 mCi N-13 ammonia. rMBF was examined at rest and during pharmacologically (dipyridamole) induced coronary hyperemia. Three sectorial myocardium (septum, anterior wall and lateral wall) and blood pool time-activity curves were generated using dynamic images from manually drawn ROIs. The accuracy of rMBF values estimated by the refined method was examined by comparing to the values estimated using the conventional two-compartment model without partial volume effect correction rMBF values obtained by the refined method linearly correlated with rMBF values obtained by the conventional method (108 myocardial segments, correlation coefficient (r)=0.88). Additionally, underestimated rMBF values by the conventional method due to partial volume effect were corrected by theoretically predicted amount in the refined method (slope(m)=1.57). Spillover fraction estimated by the two methods agreed well (r=1.00, m=0.98). In conclusion, accurate rMBF values can be efficiently quantified by the refined method incorporating myocardium geometric information into the two-compartment model using N-13 ammonia and PET.

  • PDF