• Title/Summary/Keyword: 양자 교환막

Search Result 3, Processing Time 0.017 seconds

A Feasibility Study of Low-Cost Hybrid Fuel-Cell System for Ship Auxiliary Power (선박 보조전원을 위한 저가형 하이브리드 연료전지 시스템 적용 타당성 연구)

  • Yang, Geun Ryoung;An, Sang Yong;Choo, Jin Hoon
    • New & Renewable Energy
    • /
    • v.9 no.4
    • /
    • pp.3-12
    • /
    • 2013
  • This paper proposes the hybrid fuel cell system that can solve disadvantages of existing fuel cell system and ensure high reliability and high stability. The system consists of PEM fuel cell, Ni-MH battery and power management system. In this system, when the power provided from the fuel cell is higher than the load power, the extra energy may be used to charge the Ni-MH battery. When the fuel cell can not provide enough energy to the load, the shortage of energy will be supplied by the Ni-MH battery. Experimental results show that the output voltage is regulated well during load variations. Also, high system efficiency is achieved.

Effect of Double Porous Layer on a Polymer Electrolyte Unitized Regenerative Fuel Cell (수전해·연료전지 가역셀에서 이중 가스 확산층의 효과)

  • Hwang, Chul-Min;Park, Dae-Heum;Jung, Young-Guan;Kim, Kyunghoon;Kim, Jongsoo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.4
    • /
    • pp.320-325
    • /
    • 2013
  • TUnitized reversible fuel cells (URFC) combine the functionality of a fuel cell and electrolyzer in one unitized device. For a URFC with proton exchange membrane, a titanium (Ti)-felt is applied to the gas diffusion layer (GDL) substrate at the oxygen electrode, and additionally titanium (Ti)-powders and TiN-powders are loaded in the GDL substrate as a micro porous layer (MPL). Double porous layer with TiN MPL was not acceptable for the URFC because both of fuel cell performance and electrolysis performance are degraded. The double porous layer with Ti-powder loading in the Ti-felt substrate influence rearly for the electrolysis performance. In contrast, the change of pore-size distribution brings a significant improvement of fuel cell performance under fully humidification conditions. This fact indicates that the hydrophobic meso-pores in the GDL play an important role for mass transport.

Analysis of Human Serum Amyloid A-1 Concentrations Using a Lateral Flow Immunoassay with CdSe/ZnS Quantum Dots (Human Serum Amyloid A-1 단백질 농도 분석을 위한 CdSe/ZnS 양자점 기반의 Lateral Flow Immunoassay 방법 개발)

  • Fajri, Aidil;Goh, Eunseo;Lee, Sanghyuk;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.429-434
    • /
    • 2019
  • A lateral flow immunoassay platform utilizing antibody functionalized water soluble CdSe/ZnS semiconductor quantum dots (QDs) was developed for the analysis of human serum amyloid A-1 (hSAA1) in a buffer solution. hSAA1 was chosen as a target protein because it is regarded as a potential biomarker associated with early diagnosis and prognosis in patients of lung cancer. The immunoassay strip on a nitrocellulose membrane was fabricated by spraying two lines composed of a test line with a monoclonal antibody against hSAA1 (10G1) (anti hSAA1) and a control line of anti-chicken IgY. While the CdSe/ZnS QDs synthesized in an organic phase were transferred to a water phase by ligand exchange using carboxylic acid modified alkane thiol. The QDs was then conjugated to monoclonal antibody against hSAA1 (14F8) [anti hSAA1 (14F8)] and used as a fluorescent detection probe. The sequential lateral flow of hSAA1 in different concentration and QDs-anti hSAA1 (14F8) complex allowed to form the surface sandwich complex of anti hSAA1 (10G1)/hSAA1/QD-anti hSAA1 (14F8), which was then analyzed using fluorescence microscope. A 100 nM concentration of hSAA1 protein can be detected by naked eyes under an optimized lateral flow buffer condition with a sensing time of 5 mins.