본 논문에서는 LSP 벡터 양자화의 성능에 대하여 분석하고 성능이 향상된 새로운 LSP 벡터 양자화 방법을 제안한다. 먼저, 10msec프레임 구조를 가지고 Moving Average 예측 필터를 사용한 LSP Split 벡터 양자화의 성능을 여러 훈련 방법과 벡터 Split 방법 및 Bit 할당 방법에 따라 비교한다. 다음, Split 벡터 양자화의 문제점을 해결하기 위하여 새로 운 Split 벡터 양자화 검색 방법을 제안한다. 스펙트럼 왜곡지수를 이용한 양자화 성능 측정 결과 새로 제안된 방법이 기존의 방법보다 우수한 양자화 성능을 보인다.
본 논문에서는 복부 초음파 영상에서 복부 근육을 추출하고 추출된 근육 영역에서 지방을 분석하는 방법을 제안한다. 복부 초음파 영상에서 밝은 명암도를 가지는 근막 영역과 어두운 명암도를 가지는 근육 영역의 명암 대비를 강조하기 위해서 앤드 인 탐색 스트레칭 방법과 Multiple 연산을 적용한다. 평균 명암도와 명암 대비가 강조된 복부 초음파 영상에서 수직 방향의 명암도가 200이상인 픽셀들은 퍼지 이진화 기법을 적용하여 이진화한다. 이진화된 영상에서 외복사근 상단선을 추출한 후, 퍼지 이진화 기법이 적용된 영상과 합성한다. 합성된 영상에서 최종 근막 영역을 추출한다. 추출된 각각의 복부 근육 영역에 ART2 알고리즘을 적용하여 복부 근육 영역을 양자화한다. 양자화된 복부 근육 내의 영역을 분석하여 최종 지방 영역을 추출한다. 제안된 복부 근육 추출 및 지방 분석 방법을 실제 복부 초음파 영상을 대상으로 실험한 결과, 추출된 복부 근육 영역에 ART2 알고리즘 기반 양자화 기법을 적용하여 지방을 추출하는 것이 복부비만을 분석하는데 도움이 되는 것을 영상 의학과 전문의를 통해 확인하였다.
이미 학습된 다층퍼셉트론 신경망을 디지털 VLSI 기술을 사용하여 하드웨어로 구현할 경우 신경망의 가중치 및 뉴런 출력들을 양자화해야 하는 문제가 발생한다. 이러한 신경망 변수들의 양자화는 결과적으로 주어진 입력에 대한 신경망의 최종 출력에서의 왜곡을 초래한다. 본 논문에서는 먼저 이러한 양자화로 인한 신경망 출력에서의 왜곡을 통계적으로 분석하였다. 분석 결과에 의하면 입력패턴 각 성분의 제곱들의 합과 가중치의 크기들이 양자화 영향에 주로 기여하는 것으로 나타났다. 이러한 분석 결과를 이용하여 양자화를 위한 정밀도가 주어졌을 때, 양자화 영향이 최소화된 다층퍼셉트론 신경망을 설계하는 방법을 제시하였다. 그리고 제안된 방법에 의해 얻은 신경망과 오류역전파 학습방법에 의하여 얻은 신경망의 성능을 비교함으로써 제안된 방법의 효율성을 입증하였다. 실험결과는 낮은 양자화 정밀도에서도 제안된 방법이 더 좋은 성능을 보였다.Abstract When we implement a multilayer perceptron with the digital VLSI technology, we generally have to quantize the weights and the neuron outputs. These quantizations eventually cause distortion in the output of the network for a given input. In this paper first we made a statistical analysis about the effect caused by the quantization on the output of the network. The analysis revealed that the sum of the squared input components and the sizes of the weights are the major factors which contribute to the quantization effect. We present a design method for an MLP which minimizes the quantization effect when the precision of the quantization is given. In order to show the effectiveness of the proposed method, we developed a network by our method and compared it with the one developed by the regular backpropagation. We could confirm that the network developed by our method performs better even with a low precision of the quantization.
본 논문에서는 7 kHz 대역의 광대역 신호 압축기를 위한 새로운 양자화 방법을 제안한다. 일반적인 광대역 신호 압축기는 입력 신호를 주파수 영역으로 변환하고 청각 모델을 적용하여 주파수 대역별로 양자화하여 Huffman 코딩하는 구조를 가진다. 그러나, 주파수 대역별로 신호의 특성이 일정하지 않으므로 모든 대역을 동일한 방법으로 양자화하면 각 주파수 대역의 특성에 적합한 양자화를 하지 못하므로 전체 압축기의 성능이 저하된다. 따라서 본 논문에서는 각 주파수 대역별로 특성을 분석하여 주파수 영역 또는 시간 영역 중에서 양자화에 효율적인 영역을 선택하여 양자화 하는 새로운 방법을 제안한다. 제안한 양자화 방법의 성능을 측정하여 ITU G.722.1 표준 압축기의 양자화 방법보다 우수한 성능을 가지는 것을 확인하였다.
본 논문에서는 비균일 양자화에 기반을 둔 영상의 질감분석에 널리 이용되고 있는 gray level co-occurrence matrix(GLCM)의 성능개선을 제안하였다. 여기서 비균일 양자화는 평균자승오차의 최소화를 위한 반복계산 기법인 Lloyd 알고리즘을 이용하였다. 이는 영상에서의 비균일 양자화 과정으로 얻어지는 비선형의 명암레벨을 GLCM의 생성에 이용함으로써 행렬의 차원을 감소시켜, GLCM의 생성과 질감특성 파라미터들의 계산에 따른 부하를 줄이기 위함이다. 제안된 기법을 30개의 $120{\times}120$ 픽셀의 256 그레이 레벨을 가진 영상들을 대상으로 적용하여 angular second moment, contrast, variance, entropy, correlation, inverse difference moment 6개의 질감특성 파라미터들을 각각 계산한 실험결과, 양자화를 수행하지 않은 256 레벨 GLCM에 비해 계산시간과 저장 공간에서 개선된 성능이 있음을 확인하였다. 특히 48, 32, 16, 12, 8의 비균일 양자화 레벨 중에서 16일 때 가장 우수한 질감특성분석 성능이 있음을 알 수 있었다.
많은 연산량을 가진 딥러닝은 초소형 IoT 장치나 모바일 장치에 구현하기가 어렵다. 최근에는 이러한 장치에서도 딥러닝을 구현할 수 있도록 모델의 연산량을 줄이는 딥러닝 경량화 기술이 소개되었다. 양자화는 연속적인 분포를 가지는 파라미터 값들을 고정된 비트의 이산 값으로 표현하여 모델의 메모리 및 크기 등을 줄여 효율적으로 사용할 수 있는 경량화 기법이다. 그러나 양자화로 인한 이산 값 표현으로 인해 모델의 정확도가 낮아지게 된다. 본 논문에서는 정확도를 개선할 수 있는 다양한 양자화 기술을 소개한다. 먼저 기존 양자화 기술 중 APoT와 EWGS를 선택하여 동일한 환경에서 실험을 통해 결과를 비교 분석하였다. 선택된 기술은 ResNet모델에서 CIFAR-10 또는 CIFAR-100 데이터 세트로 훈련되고 테스트 되었다. 실험 결과 분석을 통해 기존 양자화 기술의 문제점을 파악하고 향후 연구에 대한 방향성을 제시하였다.
본 논문은 다차원 서브밴드 필터 뱅크에서 양자화 효과에 대한 분석과 그에 따른 최적의 필터 설계 방법에 대한 이론을 제안한다. 기존의 서브밴드 필터뱅크에 대한 연구에서 양자화 과정에 대한 고려는 매우 미미하였다. 본 연구에서는 확률 밀도에 최적화된 양자화기가 이득에 무상관성 잡음이 더하여진 비선형 형태로 모델링 되어 서브밴드 구조에 결합된다. 분석/합성 필터 뱅크에 다위상 분리 방법을 적용하여 양자화 과정에 의한 출력에서의 MSE가 유도되며 이 에러의 최소화 과정을 통하여 최적의 필터 설계 방법이 개발된다. 또한 5점형 구조의 표본화 격자를 이용한 최적의 비분리 파라유니터리와 이중직교 필터의 설계와 이를 이용한 영상 데이터의 압축 및 복원 과정을 통하여 성능 분석을 한다. 시뮬레이션 결과 제안한 설계방법에 따른 필터가 기존의 단순한 PR 서브밴드 필터보다 영상의 압축 및 복원에서 10에서 20퍼센트 정도의 MSE 감소를 보여주었고 낮은 비트율에서 특히 우수한 성능을 나타내었다.
영상 부호화 기법에 적용하여 향상된 성능을 나타내는 균일 양자화기를 제안하였다. 또한 두 가지 형태의 서로 다른 균일 양자화기에 대하여 비트율-왜곡(rate-distortion) 특성을 분석하였다. 분석결과 입력(input source)의 평균값을 기준으로, 구간값(decision level)을 이동시키는 제안한 양자화 기법이 다른 양자화기 보다 향상된 비트율-왜곡 특성을 보였다. 아울러 제안한 양자화기를 웨이브릿 변환 부호화기에 적용한 결과, 여러 가지 영상에 대하여 기존의 양자화 기법보다 우수한 결과를 얻었다.
RPE 음성부호화기에서 합성 필터로 인한 구동벡터 양자화잡음의 증폭효과를 분석하고 regular pulse 시퀀스의 양자화로 인한 성능감쇄를 줄이기 위해 pyramid vector 양자화방식을 도입하였다. 제안된 방식의 성능평가는 구동시퀀스 양자화를 위해 adaptive PCM을 이용하는 GSM 표준 RPE 방식과의 객관적 및 주관적 성능비교를 통해 수행하였다.T JDSMDQLRY 결과 제안된 방식은 대략 1dB의 SNR 및 segmental SNR 값 증가를 가져왔고, 또한 비공식 청취시험결과 명료도의 증가를 느낄 수 있었다.
본 논문에서는 현재 MPEG, JPEG 압축 알고리즘에서 쓰이는 DCT(Discrete Cosine Transform)기반의 손실 영상 압축에 사용되는 양자화(Quantization) 처리에 필요한 나눗셈 연산기를 제안한다. 영상 데이터 처리를 위한 양자화기(Quantizer)는 DCT로부터 매 사이클마다 영상 데이터를 입력 받아 양자화 처리를 해야하며 보다 나은 영상 데이터를 위해 최종 나눗셈 결과 즉, 몫을 소수 첫째자리에서 반올림(Rounding)해야 한다. 이를 위해 반올림 동작이 추가된 Pipelined Nonrestoring Array Divider를 설계하였다. 제안된 방법의 타당성을 검증하기 위해 DCT로부터 나온 영상 데이터를 제안된 구조의 양자화기로 양자화하여 일반 양자화기에서 나온 압축된 데이터와 비교해 보았다. 또한 합성기(Synthesis)를 통하여 실제 하드웨어 크기를 분석하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.