Proceedings of the Optical Society of Korea Conference
/
2000.08a
/
pp.254-255
/
2000
반도체 양자점은 수 백 개에서 수 만 개에 이르는 원자들로 이루어진 미세한 결정 구조로써 독특한 물성들을 나타내므로 많은 연구가 이루어지고 있다. 양자점은 전자와 양공을 공간적으로 구속하는 양자효과에 의하여 양자점의 크기가 엑시톤의 보어 반지름보다 작아질수록 띠간격 에너지가 청색 편이하고 엑시톤의 결합 에너지가 증가하며 에너지 전이가 불연속이 되어 진동자 세기가 집중되는 등 광학적인 성질이 크게 변화하게 된다. 이미 반도체 양자우물 구조의 연구에서 나타나듯이 차원이 더욱 감소된 양자점에서는 엑시톤의 광학적 비선형성이 증가할 것으로 기대되어 유리 조직 내에 첨가시킨 반도체 미세구조나 박막 생장 기법에 의한 자발 형성 양자점, 화학적인 방법으로 얻어지는 용액상의 콜로이드등 다양한 방법들로 반도체 양자점을 제작하고 있다. 특히 양자점의 크기 분포, 모양 조절 및 양자점의 규칙적인 배열 등은 양자점의 기본적인 물성 탐구에 있어서 뿐 아니라 기능성 소자로의 응용에 있어서 잠재성이 크기 때문에 다양한 연구들이 이루어지고 있다. (중략)
Kim, Jong-Su;Han, Im-Sik;Lee, Seung-Hyeon;Son, Chang-Won;Lee, Sang-Jo;Smith, Ryan P.;Ha, Jae-Du;Kim, Jin-Su;No, Sam-Gyu;Lee, Sang-Jun;Choe, Hyeon-Gwang;Im, Jae-Yeong
Proceedings of the Korean Vacuum Society Conference
/
2012.02a
/
pp.107-107
/
2012
본 연구에서는 GaAs p-i-n 태양전지구조에 InAs 양자점을 삽입하여 계면의 전기장 변화를 Photoreflectance (PR) 방법으로 연구하였다. InAs/GaAs 양자점 태양전지구조는 n-GaAs 기판위에 p-i-n 구조의 태양전지를 분자선박막성장 장치를 이용하여 제작하였다. GaAs p-i-n 태양전지와 p-QD(i)-n 양자점 태양전지를 제작하여 계면전기장의 변화를 PR 신호에 나타난 Franz-Keldysh oscillation (FKO)으로부터 측정하였다. 기본적인 p-i-n 구조에서 두 가지 전기장성분을 검출 하였고 양자점 태양전지구조에서는 39 kV/cm 이상의 내부전기장이 존재함을 관측하였다. 이러한 내부전기장은 양자점 주변에 형성된 국소전기장의 효과로 추측하였다. 아울러 양자점을 AlGaAs 양자우물 구조에 삽입하여 케리어의 구속에 의한 FKO의 변화를 관측하였으며 양자점 태양전지의 구조적 변화에 따른 효율을 측정하여 비교 분석하였다.
Kim, Su-Hwan;Lee, Ju-Hyeong;Choe, Jin-Cheol;Lee, Hong-Seok
Proceedings of the Korean Vacuum Society Conference
/
2014.02a
/
pp.305-305
/
2014
양자점(Quantum dots)은 3차원적 운반자 구속과 낮은 전류와 높은 온도에서 작동하는 나노 크기의 전기적, 광학적 소자로 응용이 적합하기 때문에 그 특성을 이용한 단전자 트랜지스터, 적외선 검출기, 레이저, LED, 태양전지 등 반도체 소자로의 응용연구가 활발히 진행되고 있다. 특히 양자점의 낮은 임계전류밀도와 높은 차동 이득(differential gain), 그리고 고온에서 작동이 용이하여 양자점 레이저로 활용되고 있다. 이러한 분야에 양자점을 응용하기 위해서는 양자점의 운반자 동역학을 이해하고 양자점의 모양, 크기, 크기 분포와 같은 특성 조절이 필요하다. 또한 기존의 연구들은 III-V족 화합물 반도체 양자점에 대한 연구가 대부분이며, II-VI족으로 구성된 연구가 미흡한 상황이기 때문에 II-VI족 화합물 반도체 양자점에 대한 많은 연구가 필요한 상황이다. II-VI 족 화합물 반도체 양자점은 기존의 III-V 족 양자점보다 더 큰 엑시톤 결합에너지(exciton binding energy)를 가지고 있으며, 이러한 특성을 가지는 II-VI 족 화합물 반도체 양자점 중에서도 CdTe 양자점은 높은 엑시톤 결합에너지와 녹색 스펙트럼 영역을 필요로 하는 광학적 장치들에 응용 가능성이 높기 때문에 더욱 주목받고 있다. 본 연구에서는 분자 선속 에피 성장법(Molecular Beam Epitaxy; MBE)과 원자 층 교대 성장법(Atomic Layer Epitaxy; ALE)으로 CdTe/ZnTe 나노구조에서 ZnTe 완충층의 두께에 따른 운반자 동역학 및 광학적 특성을 연구 하였다. 저온 광루미네센스 측정(Photoluminescence; PL) 을 통하여 ZnTe 완충층 두께가 증가할수록 양자점의 광루미네센스 피크가 낮은 에너지로 이동함을 알 수 있었는데, 이는 ZnTe 완충층의 두께가 증가할수록 ZnTe 완충층과 CdTe 양자점의 격자 불일치(lattice mismatch)로 인한 구조 변형력이 감소하고 이에 따라 CdTe 양자점으로 가해지는 변형(Strain)이 감소하여 CdTe 양자점의 크기가 증가했기 때문이다. 그리고 ZnTe 완충층의 두께가 증가할수록 PL 세기가 증가함을 알 수 있었는데, 이는 ZnTe 완충층의 두께가 증가할수록 양자 구속 효과로부터 electronic state와 conduction band edge 사이의 에너지 차이의 증가 때문이다. 또한 시분해 광루미네센스 측정 결과 ZnTe의 두께가 증가할수록 양자점의 소멸 시간이 더 길게 측정되었는데, 이는 더 큰 양자점 일수록 엑시톤 오실레이터 강도가 감소하기 때문에 더 긴 소멸 시간을 나타내는 것을 확인할 수 있었다. 결과적으로 본 연구는 ZnTe 두께 변화를 통해 양자점의 에너지 밴드를 제어할 수 있으며, 양자점의 효율 향상을 할 수 있는 좋은 방법임을 제시하고 있다.
Kim, Su-Yeon;Song, Jin-Dong;Lee, Eun-Hye;Han, Il-Gi;Lee, Jeong-Il;Kim, Tae-Hwan
Proceedings of the Korean Vacuum Society Conference
/
2010.02a
/
pp.166-166
/
2010
산업 전반에 걸쳐 중요한 광원인 808 nm 대역의 레이저 다이오드 제작에는 현재 InGaAsP/InGaP/GaAs 및 InGaAlAs/GaAs 양자우물을 이용하여 제작되고 있다. 이는 양자우물과 이를 둘러싸는 장벽물질간의 band-offset이 적어 효율적인 고출력 레이저 다이오드의 제작에 어려움이 있기 때문에 강한 캐리어 구속 효과를 지니는 양자점을 사용하는 것이 고출력 레이저 다이오드를 제작할 수 있는 방법이다. 실험에 사용된 InAlAs 양자점은 Riber사의 compact21 MBE 장치를 사용하여 성장하였으며 GaAs기판을 610도에서 가열하여 표면의 산화층을 제거하고 580도에서 약 100 nm 두께의 GaAs 버퍼층 및 30 nm 두께의 $Al_{0.4}Ga_{0.6}As$층을 성장하였다. GaAs 기판의 온도를 내린 후 migration enhanced epitaxy 방법을 사용하여 InAs 및 AlAs를 번갈아 주입하여 성장하였다. InAlAs 양자점의 성장 중에 InAlAs의 양, 성장 온도, As flux량 및 As 분자 상태 변화 등 다양한 조건을 변화 시켜 샘플을 성장시켰다. 그 결과 기판 온도가 600도이며 As4 flux가 $1\;{\times}\;10^{-6}\;Torr$ 조건하에서 성장한 InAlAs/AlGaAs 양자점이 양질의 808 nm의 파장 대역을 얻을 수 있었다.
Proceedings of the Korean Vacuum Society Conference
/
2013.02a
/
pp.340-341
/
2013
양자점(Quantum dots; QDs)은 단전자 트랜지스터, 레이저, 발광다이오드, 적외선 검출기와 같은 고효율 광전소자 응용을 위해 활발한 연구가 진행되고 있다. II-VI 족 화합물 반도체는 III-V 족 화합물 반도체와 비교했을 때 더 큰 엑시톤 결합에너지(exciton binding energy)를 가지는 우수한 특성을 보이고 있으며 이러한 성질을 가지는 II-VI 족 화합물 반도체 중에서도 넓은 에너지 갭을 가지는 CdTe 양자점은 녹색 영역대의 광전자 소자로서 활용되고 있다. 기존의 CdTe/ZnTe 양자점을 성장하기 위해 ZnTe와 격자부정합이 적은 GaAs 기판을 이용한 연구가 주를 이룬 반면 Si기판을 이용한 연구는 미흡하다. 하지만 Si 기판은 GaAs 기판에 비해 값이 싸고, 여러 분야에 응용이 가능하며 대량생산이 가능하다는 이점을 가지고 있어 초고속, 초고효율 반도체 광전소자의 제작을 가능케 할 것으로 기대된다. 또한 양자점의 고효율 광전소자에 응용을 위해서는 Si 기판 위에 양자점의 크기를 효율적으로 조절하는 연구 뿐 아니라 양자점의 크기에 따른 운반자 동역학에 대한 연구도 중요하다. 본 연구에선 분자선 에피 성장법(Molecular Beam Epitaxy; MBE)과 원자층 교대 성장법(Atomic Layer Epitaxy; ALE)을 이용하여 Si 기판 위에 성장한 CdTe/ZnTe 양자점의 크기에 따른 광학적 특성을 연구하였다. 저온 광 루미네센스(PhotoLuminescence; PL) 측정 결과 양자점의 크기가 증가함에 따라 더 낮은 에너지영역으로 피크가 이동하는 것을 확인하였다. 그리고 온도 의존 광루미네센스 측정 결과 양자점의 크기가 증가함에 따라 열적 활성화 에너지가 증가하는 것을 관찰하였는데, 이는 양자점의 운반자 구속효과가 증가하였기 때문이다. 또한 시분해 광루미네센스 측정 결과 CdTe/ZnTe 양자점의 크기가 증가함에 따라 소멸 시간이 긴 값을 갖는 것을 관찰하였는데, 이는 양자점의 크기가 증가함에 따라 엑시톤 진동 세기가 감소하였기 때문이다. 이와 같은 결과 Si 기판 위에 성장한 CdTe/ZnTe 양자점의 크기에 따른 열적 활성화 에너지와 운반자 동역학에 대해 이해 할 수 있었다.
Proceedings of the Korean Vacuum Society Conference
/
2013.08a
/
pp.213-213
/
2013
화합물 반도체 양자점(Quantum dots; QDs)은 높은 효율의 광전자 소자에 적용할 수 있기 때문에 이분야에 대한 연구가 활발히 진행되고 있지만 주로 III-V 족 화합물 반도체에 대한 연구가 주를 이룬 반면 II-VI 족 화합물 반도체에 대한 연구는 아직 미흡하다. 하지만 II-VI 족 화합물 반도체는 III-V 족 화합물 반도체와 비교했을 때 더 큰 엑시톤 결합에너지(exciton binding energy)를 가지는 우수한 특성을 보이고 있으며 이러한 성질을 가지는 II-VI 족 화합물 반도체 중에서도 넓은 에너지 갭을 가지는 $Cd_xZn_{1-x}Te$ 양자점은 녹색 영역대의 광전자 소자로서 활용되고 있다. 현재 대부분의 $Cd_xZn_{1-x}Te$ 양자점 구조는 기판과 완충층 (buffer layer) 사이의 작은 격자 부정합(lattice mismatch) 때문에 GaAs 기판을 이룬 반면 Si기판을 이용한 연구는 미흡하다. 하지만 Si 기판은 GaAs 기판에 비해 값이 싸고, 여러 분야에 응용이 가능하며 대량생산이 가능하다는 이점을 가지고 있어 초고속, 초고효율 반도체 광전소자의 제작을 가능케 할 것으로 기대된다. 또한 양자점의 고효율 광전소자에 응용을 위해서는 Si 기판 위에 양자점의 크기를 효율적으로 조절하는 연구 뿐 아니라 양자점의 크기에 따른 운반자 동역학에 대한 연구도 중요하다. 본 연구에선 분자선 에피 성장법(Molecular Beam Epitaxy; MBE)을 이용하여 Si 기판위에 성장한 $Cd_xZn_{1-x}Te/ZnTe$ 양자점의 크기에 따른 광학적 특성을 연구하였다. 저온 광 루미네센스 (PhotoLuminescence; PL) 측정 결과 양자점의 크기가 증가함에 따라 더 낮은 에너지영역으로 피크가 이동하는 것을 확인하였다. 그리고 시분해 광루미네센스 측정 결과 $Cd_xZn_{1-x}Te/ZnTe$ 양자점의 크기가 증가함에 따라 소멸 시간이 긴 값을 갖는 것을 관찰 하였는데, 이는 양자점의 크기가 증가함에 따라 엑시톤 진동 세기가 감소하였기 때문이다. 또한 온도 의존 광루미네센스 측정 결과 양자점의 크기가 증가함에 따라 열적 활성화 에너지가 증가하는 것을 관찰 하였는데, 이는 양자점의 운반자 구속효과가 증가하였기 때문이다. 이와 같은 결과 Si 기판 위에 성장한 $Cd_xZn_{1-x}Te/ZnTe$ 양자점의 크기에 따른 광학적 특성에 대해 이해 할 수 있었다.
Proceedings of the Korean Vacuum Society Conference
/
2012.08a
/
pp.196-196
/
2012
염료감응 태양전지는 실리콘 태양전지에 비해 단가가 낮고 반투명하며 친환경적 특성으로 차세대 태양전지로 주목을 받았으나 염료의 안정성의 문제와 특정 파장대의 빛만 흡수하는 단점을 가지고 있다. 이러한 문제점을 해결하기 위하여 양자구속 효과에 의해 크기에 따라 밴드갭 조절이 용이하여 다양한 파장대의 빛을 흡수 할 수 있는 양자점 감응태양전지가 많은 관심을 받고 있다. 하지만 양자점 감응 태양 전지의 활성층으로 사용되는 반도체 산화물인 이산화티타늄의 두께는 $13{\sim}18{\mu}m$로 짧은 확산거리로 인해 전하수집의 한계를 가지고 있다. 이를 극복하기 위해 인듐 주석 산화물 나노선을 합성하여 전자가 광전극에 직접유입이 가능하도록 해 빠른 전하이동 및 전하수집을 가능하게 한다. 인듐 주석 산화물 나노선은 증기수송 방법(VTM)을 이용하여 인듐 주석 산화물 유리 기판 위에 $5{\sim}30{\mu}m$ 길이로 합성하였다. 전해질과 전자가 손실되는 것을 방지하기 위해 원자층 증착법(ALD)을 이용하여 이산화 티타늄 차단층을 20 nm 두께로 코팅한 후 화학증착방법(CBD)을 이용하여 인듐 주석 산화물 나노선-이산화 티타늄 코어-쉘 구조를 만든다. 마지막으로 황화카드뮴, 카드늄셀레나이드, 황화아연을 증착시킨 후 다황화물 전해질을 이용하여 양자점 감응 태양전지를 제작하였다. 특성 평가를 위해 전계방사 주사전자현미경, X-선 회절, 고분해능 투과 전자 현미경을 이용하며 intensity modulated photocurrent spectroscopy (IMPS), intensity modulated voltage spectroscopy (IMVS)를 이용하여 전하수집 특성평가를 하였다.
Kim, Su-Yeon;Song, Jin-Dong;Lee, Eun-Hye;Han, Il-Gi;Lee, Jeong-Il;Kim, Tae-Hwan
Proceedings of the Korean Vacuum Society Conference
/
2011.08a
/
pp.297-297
/
2011
일반적으로 고출력 반도체 레이저 다이오드는 발진 파장 및 광출력에 따라 다양한 분야에 응용되고 있으며, 특히 발진파장이 808 nm 대역인 고출력 레이저 다이오드의 경우 재료가공, 펌핌용 광원, 의료 분야 등 다양한 응용분야를 가진 광원 중의 하나라고 할 수 있다. 808 nm 대역의 레이저 다이오드 제작에는 현재 InGaAsP/InGaP/GaAs 및 InGaAlAs/GaAs 양자우물을 이용하여 제작되고 있으나 양자우물과 이를 둘러싸는 장벽물질간의 band-offset이 적어 효율적인 고출력 레이저 다이오드의 제작에 다소 어려움이 있기 때문에 강한 캐리어 구속 효과를 지니는 양자점 혹은 양자대쉬 구조를 사용하는 것이 고출력 레이저 다이오드를 제작할 수 있는 한 방법이다. 실험에 사용된 InP/InGaP 양자구조는 Riber사의 compact21 MBE 장치를 사용하여 성장하였으며 GaAs기판을 620-630도에서 가열하여 표면의 산화층을 제거하고 580도에서 약 100 nm 두께의 GaAs 버퍼층 및 50 nm 두께의 InGaP층을 성장하였다. 양자 구조는 MEE (migration enhanced epitaxy) 방식으로 성장되었는데, 이는 InP/InGaP 의 lattice mismatch율이 작아 양자 구조 형성이 어렵기 때문에 InP/InGaP 양자 구조 성장에 적합하다고 생각하였으며, Indium 2초, growth interuption time 10초, phosphorous 2초 그리고 growth interuption time 10초를 하나의 시퀀스로 보고, 그 시퀀스를 반복하여 양자 구조를 성장하였다. 본 실험에 사용된 P 소스는 Riber사의 KPC-250 P-valved cracker모델을 사용하였으며 InP의 성장률은 0.985${\AA}/s$이다. InP/InGaP 양자구조 성장 중에, 성장 온도, 시퀀스 수의 변화 등 다양한 조건을 변화 시켜 샘플을 성장시켰고, 양자 구조 성장을 확인하기 위하여 AFM 및 SEM을 통해 구조적 분석을 하였으며 PL 측정을 통해 광학적 분석을 진행하였다.
Kim, Jeong-Seop;Ha, Seung-Gyu;Yang, Chang-Jae;Lee, Jae-Yeol;Park, Se-Hun;Choe, Won-Jun;Yun, Ui-Jun
Proceedings of the Korean Vacuum Society Conference
/
2010.02a
/
pp.129-129
/
2010
적외선 검출소자(Infrared Photodetector)는 근적외선에서 원적외선 영역에 이르는 광범위한 파장 범위의 적외선을 이용하는 기기로서 대상물이 방사하는 적외선 영역의 에너지를 흡수하여 이를 영상화할 수 있는 장비이다. 적외선 관련 기술은 2차 세계대전 기간에 태동하였으며, 현재에는 원거리 감지기술 등과 접목되면서 그 활용 분야가 다양해지고 있다. 특히 능동형 정밀 타격무기를 비롯한 감시 정찰 장비 및 지능형 전투 장비 시스템 등에 대한 요구를 바탕으로 보다 정밀하고 신속한 표적 감지 및 정보처리 기술에 관한 연구가 선진국을 통해서 활발히 진행되고 있다. 기존의 Bolometer 형식의 열 감지 소자는 반응 속도가 느리고 측정 감도가 낮은 단점이 있으며, MCT(HgCdTe)를 이용한 적외선 검출기의 경우 높은 기계적 결함과 77K 저온에서 동작해야하기 때문에 발생하는 추가 비용 등이 문제점으로 지적되고 있다[1]. 이에 반해 화합물 반도체 자기조립 양자점(self-assembled quantum dot)을 이용한 적외선 수광소자는 양자점이 가지는 불연속적인 내부 에너지 준위로 인하여, 높은 내부 양자 효율과 온도 안정성을 기대할 수 있으며, 고성능, 고속처리, 저소비전력 및 저소음의 실현이 가능하다. 본 연구에서는 적층 InAs/InGaAs dot-in-a-well 구조를 유기금속화학기상증착법을 이용하여 성장하고 이를 소자에 응용하였다. 균일한 적층 양자점의 성장을 위해서 원자현미경(atomic force microscopy)을 이용하여, 각 층의 양자점의 크기와 밀도를 관찰하였고, photoluminescence (PL)를 이용하여 발광특성을 연구하였다. 각 층간의 GaAs space layer의 두께와 온도 조절 과정을 조절함으로써 균일한 적층 양자점 구조를 얻을 수 있었다. 이를 이용하여 양자점의 전도대 내부의 에너지 준위간 천이(intersubband transition)를 이용하는 n-type GaAs/intrinsic InAs 양자점/n-type GaAs 구조의 양자점 적외선수광소자 구조를 성장하였다. 이 과정에서 상부 n-type GaAs의 성장 온도가 600도 이상이 되는 경우 발광효율이 급격히 감소하고, 암전류가 크게 증가하는 것을 관찰하였다. 이는 InAs 양자점과 주변 GaAs 간의 열에 의한 상호 확산에 의하여 양자점의 전자 구속 효과를 저해하는 것으로 설명된다.
Proceedings of the Korean Vacuum Society Conference
/
2010.02a
/
pp.89-90
/
2010
최근 우리는 InGaAs 위에 성장한 InAs 양자점에 GaAs를 얇게 덮음으로써 양자고리를 성장하고, 그 광학적 특성을 분석하였다. [1] 이번 연구에서는 이 양자고리 구조의 전자 구조 및 광학적 특성을 전산모사를 통해 계산하였고, GaAs가 구조의 응력, 압전 포텐셜 및 light-hole 분율에 미치는 영향을 분석하였다. 이론적인 분석을 위해, valence force field 방법을 이용하여 이종 물질간의 격자상수 차이에 의한 격자 변형 및 압전 포텐셜의 변화를 계산하였고, 양자고리 내 전자의 양자화 에너지 및 파동함수를 k p 방법을 통해 얻을 수 있었다. 또한 광학적인 특성 등의 다체 효과를 예측하기 위해 configuration interaction 방법을 사용하였다. 이 연구에서 우리는, GaAs가 InAs에 강한 압축 응력을 가할 것이라는 일반적인 예측과 달리, InGaAs 매트릭스 안에서는 격자상수가 작은 GaAs가 InAs 양자고리에 효과적인 압축 응력을 가할 수 없음을 보였다. 특히 GaAs 층의 두께가 얇을 경우, InGaAs 매트릭스에 의해 인장 응력을 받는 GaAs가 InAs의 응력을 해소하기 충분한 공간을 제공하여, 오히려 InAs의 압축 응력을 약화시키는 것을 알 수 있었다. 이 연구 결과는 응력 분포가 단순한 양자우물 등의 2차원 구조와 달리, 응력 분포가 복잡한 3차원 나노 구조에서는 단순히 격자상수만으로 파장 변화 경향을 예측할 수 없음을 나타낸다. 또한 우리는, GaAs의 큰 negative 이방 응력과 InAs의 작은 positive 이방 응력에 의해 전자와 heavy-hole은 InAs에, light-hole은 GaAs에 구속됨을 보였다. 즉, InAs보다 밴드갭이 큰 GaAs가 전자와 heavy-hole에 대해서는 강한 포텐셜 배리어로 작용하지만 light-hole에 대해서는 포텐셜 우물로 작용하는, 반 우물-반 배리어 특성을 가짐을 알 수 있었다. 이로 인해 GaAs가 있는 양자고리의 light-hole 분율이 GaAs가 없을 경우에 비해 2배에서 8배가량 증가함을 보일 수 있었다. 비슷한 특성이 hole에 대해서는 InP나 InGaAsP 위에 성장한 GaAs 층에서 보고된 바가 있으나, 전자는 InAs로, hole은 GaAs로 분리할 수 있는 3차원 나노 구조에 대한 연구는 이 연구가 처음이다. [2]
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.