• Title/Summary/Keyword: 양액농도조절

Search Result 129, Processing Time 0.026 seconds

Effects of Light Intensity, Nutrient Solution Compositions before Harvest and the Time of Nutrient Solution Removal on Nitrate Contents in Hydroponically-Grown Leaf Lettuces in Closed Plant Production System (폐쇄형 식물생산시스템에서 광도, 수확 전 양액조성 및 양액결제시기가 잎상추의 체내 질산염 함량에 미치는 영향)

  • Yeo, Kyung-Hwan;Choi, Gyeong-Lee;Lee, Jung-Sup;Lee, Jae-Han;Park, Kyoung-Sub;Kim, Jin-Hyun
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.393-401
    • /
    • 2017
  • The nitrate ($NO_3{^-}$) accumulation of hydroponically grown leafy vegetables may increase in the condition of a closed-type plant production system with low light intensity due to low activity of enzymes involved in nitrogen assimilation and the use of $NO_3-N$ as major nitrogen source. The objective of this study is to investigate the effects of light intensities, nutrient solution compositions and the time of nutrient solution removal before harvest on nitrate contents of hydroponically-grown lettuces in a closed plant production system. The reduction of nitrate contents in leafy lettuces 'Cheongchima' was higher in the treatments of 'TW' (nutrient solution removal) and '$(NH_4)_2CO_3$' (use of ammonium carbonate as nitrogen source) than those in other treatments, which significantly lowered fresh weight and leaf area of the plants. In the light intensity of $100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, the nitrate content was effectively reduced without causing any growth retardation, by substitution of the nutrient solution composition that $NO_3-N$ was removed ('$NO_3-N$ removal' treatment) or the half strength of standard nutrient solution was applied ('1/2 S' treatment), for 7days before harvest. The effects of light intensity and the time of nutrient solution removal before harvest on growth and nitrate contents in leafy lettuces were investigated. The nitrate contents in leaves under the light condition of $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ before nutrient solution removal were lower than those of 100 or $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. The removal of nutrient solution for 7 days before harvest quickly reduced the amount of nitrates in leaves in all the light intensities with a greater degree under the $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ of light condition, while the 7 days-removal with both 200 and $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ of light conditions caused decrease in 16~31% of leaf area and 20~35% of fresh weight, compared to the 3 days-removal treatment. The nitrate contents were greatly reduced from 3,018 to 1,035 in $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, and 2,021 to 480 ppm in the light condition of $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, with the nutrient solution removal for 3 days before harvest, without causing any deterioration in growth and product quality. The vitamin C contents in leaves were higher in the treatment of nutrient solution removal for both 3 and 5 days before harvest with the light condition of $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ than those in the light condition of 100 or $200{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$.

Effects of Nutrient Solution Concentration and Substrate on the Growth of Common Thyme(Thymus vulgaris L.) (배지의 종류와 배양액농도가 백리향(Thymus vulgaris L.)의 생육에 미치는 영향)

  • 김예희;이문정;박권우
    • Journal of Bio-Environment Control
    • /
    • v.8 no.2
    • /
    • pp.90-98
    • /
    • 1999
  • This study was conducted to select proper substrate and nutrient solution concentration for favorable growth and quality in common thyme (Thymus vulgaris L.). The growth of common thyme was better in deep flow culture (DFT) than in other substrate cultures. As the nutrient solution concentration rose, the ratio of dry matter increased, while the fresh weight and the number of lateral shoots decreased. The contents of total chlorophyll and vitamin C were higher in DFT than others. Ca, K, P were showed high contents in cocopeat, but Mg content was the highest at half-fold concentration in DFT. Common thyme showed low content of nitrate in DFT compared with that in other substrate culture. DFT was the most effective system for pronoting growth and quality of common thyme. The optimal concentration of nutrient solution in common thyme was half-fold(EC=1.2mS/cm) of herbs nutrient solution by European Vegetable R&D Center.

  • PDF

Growth Responses of Potted Gerbera 'Sunny Lemon' under Non-Nutrient Solution Recycling System by Media and Nutrient Contents (비순환식 분화 양액재배시 배지와 양액함량에 따른 거베라 'Sunny Lemon'의 생육반응)

  • Kil, Mi-Jung;Shim, Myung-Sun;Park, Sang-Kun;Shin, Hak-Gi;Jung, Jae-A;Kwon, Young-Soon
    • Journal of agriculture & life science
    • /
    • v.45 no.6
    • /
    • pp.73-80
    • /
    • 2011
  • To investigate the characteristics of plant growth and flower quality of gerbera 'Sunny Lemon' by amount of nutrient solution, young seedling plants, 'Sunny Lemon' were transplanted to rock-wool and medium of peat moss and perlite mixed with 1 to 2 and they were acclimatized in greenhouse during about 1 month. Nutrient solution supplied to the plants is sonneveld solution of 1/2 concentration and treatments launched June 24, 2010 when average plant height was $20{\pm}1cm$. Nutrient contents as a standard for starting point of irrigation by time domain reflectometry (TDR) were determined with 60-65%, 70-75%, and 80-85%. Results of growth during vegetative growth, plant height, leaf width and leaf number increased by 10% in rockwool, but they were not significantly different. As for plant growth depending on nutrient content, 80-85% treatment showed the highest values. Leaf number increased by 60%, and leaf width and plant height had a about 40% increase than initial growth. Effectiveness for flower quality, yield and days to flowering were superior when nutrient content of media was higher than in the others. Especially, average days to flowering in 80-85% content was advanced by 7-10 days compared to the day in 60-65% treatment. The total amount of nutrient supply per plant was higher in mixed medium than in rockwool, but change patterns of EC and pH were enhanced in rockwool. Based on our results, we recommended that growth, cut flower, and yield of gerbera 'Sunny Lemon' were more effective when nutrient content of mixed medium was maintained at 80-85%.

Bush Growth and Fruit Quality of 'Duke' Blueberry Influenced by Nutritional Composition in Unheated Plastic House (블루베리 '듀크' 품종의 무가온 하우스 재배에서 질소비율 조절에 따른 수체생육 및 과실품질 변화)

  • Cheon, Mi Geon;Kim, Yeong Bong;Hong, Kwang Pyo;Kumar, H.M. Prathibhani C.;Kim, Jin Gook
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.319-325
    • /
    • 2018
  • The aim of the present study was to determine the influence of different fertilizer combinations on the growth, yield, and fruit quality of 'Duke' blueberry cultivar and the water quality of growth medium. The experiment was carried out with three year old 'Duke' blueberry bushes which were cultivated in containers ($60{\times}80{\times}40cm$) filled with 130 L peat moss and 40 L pearlite (v/v). Sawdust was used as the mulch in growth containers. Three different fertilizer combinations (FC) i.e., FC-1 consisted with standard solution, FC-2 consisted with nitrogen reduced by 10% from FC-1, and FC-3 consisted with nitrogen reduced by 20% from FC-1 were tested while, the ground water used as the control. The effects of different fertilizer combinations on shoot diameter, shoot length, number of shoots, leaf length, SPAD value (the relative content of chlorophyll), berry weight, soluble solids content, titratable acidity, and yield per bush in 'Duke' blueberry were examined. Also, the effects of different fertilizer combinations on pH, EC, $NH_4$ and $NO_3$ in 'Duke' blueberry growth medium were monitored. The highest pH and lowest EC, $NH_4$ and $NO_3$ in growth medium was recorded with control treatment during the experiment period. The maximum shoot diameter (3.7 mm) and shoot length (35.7 cm) was recorded for the FC-1. Highest number of shoots (47%) were recorded from 'Duke' blueberry bushes supplemented with FC-1 compared to other treatments. The fertilizer combinations supplemented with nitrogen showed significant influence on leaf length and SPAD value compared to control 'Duke' blueberry bushes. However, the fruit quality attributes, i.e., berry weight, soluble solids content, and titratable acidity were not significant different among fertilizer treatments. The significantly highest yields per bush were recorded for FC-1, FC-2, and FC-3, as 2.2, 2.9, and 2.7 kg, respectively compared to control (0.2 kg). Although, the FC-1 was supplemented with highest nitrogen content it resulted low yield per bush while having high number of shoots and vigorous growth.

Ionic Characteristics of the Ground Water for Hydroponics in Kyeongnam Area (경남지역 양액재배용 지하수의 이온 분포특성)

  • 이영한;전성건;황연현;조강희;신원교
    • Journal of Bio-Environment Control
    • /
    • v.7 no.3
    • /
    • pp.246-252
    • /
    • 1998
  • This study was carried out to investigate the quality of ground water for hydroponics in Kyeongnam area in 1995. Water samples were collected and analyzed from 77 wells in green houses throughout Kyeongnam area. The values of several components in well water were as follows ; 7.4 in pH, 0.46dS/m in EC, 0.3mg/L in N $H_{4}$-N, 25.4mg/L in $Ca^{2+}$, 42.6mg/L in C $l^{[-10]}$ and 72.5mg/L in S $O_{4}$$^{2-}$. The pH value showed high positive significance of correlationships with $Ca^{2+}$ and EC. Also, the EC value showed high positive significance with N $a^{+}$, $Ca^{2+}$, S $O_{4}$$^{2-}$, $Mg^{2+}$ and C $l^{[-10]}$ .

  • PDF

Mathematical Models of Photosynthetic Rate of Hydroponically Grown Cucumber Plants as Affected by Light Intensity, Air Temperature, Carbon Dioxide and Leaf Nitrogen Content (광도, 온도, $\textrm{CO}_2$ 농도 및 엽중 질소농도의 변화에 따른 양액재배 오이의 광합성속도에 관한 수리적 모형)

  • 임준택;백선영;정현희;현규환;권병선
    • Journal of Bio-Environment Control
    • /
    • v.9 no.3
    • /
    • pp.171-178
    • /
    • 2000
  • Gross photosynthetic rats of leaves of hydroponically grown cucumber plants(Cucumis sativus L. cv. Guwoosalichungjang) were measured under various conditions of photosynthetic photon flux(PPF), ambient $CO_2$ concentration, air temperature and leaf nitrogen contents. Light compensation point of leaf photosynthesis appeared to be in the range of 10~20$\mu$mol.m$^{-2}$ .s$^{-1}$ and light saturation point be above 1000$\mu$mol.m$^{-2}$ .s$^{-1}$ . Gross photosynthetic rates increased persistently and asymptotically as air temperature rose from 12$^{\circ}C$ to 32$^{\circ}C$. However, there were only small differences in gross photosynthetic rates in the range of 24-32$^{\circ}C$, so that the range seemed to be optimal for photosynthesis of cucumber plants at the condition of $CO_2$ concentration of 400$\mu$mol.mol$^{-1}$ and PPF of around 400$\mu$mol.m$^{-2}$ .s$^{-1}$ . $CO_2$ compensation point of leaf photosynthesis appeared to be in the range of 20-40$\mu$mol.mol$^{-1}$ and $CO_2$ saturation point be above 1200$\mu$mol.mol$^{-1}$ . Gross photosynthetic rates increased sigmoidally as leaf nitrogen content increased. These environmental factors interacted synergistically to enhance gross photosynthetic rate, so that the rate increased multiplicatively s level of one factor increased progressively with higher levels of he other factors. Mathematical models wer developed to estimate the gross photosynthetic rate in accordance with the variations of these environmental factors. These modes can be used not only to explain he variation of growth or yield of cucumber plants under different environmental conditions but also as building blocks of plant growth model or expert system of cucumber plants.

  • PDF

Effect of Adding Seawater on the Growth, Yield and Fruit Quality of Hydroponically Grown Tomato (Lycopersicon escuzentum Mill) (수경재배시 해수처리가 토마토 생육, 수량 및 품질에 미치는 영향)

  • 박용봉;김용덕
    • Journal of Bio-Environment Control
    • /
    • v.11 no.4
    • /
    • pp.181-187
    • /
    • 2002
  • The overall objective of this study was to improve tomato fruit quality, while maximizing yield. The variety of 'Momotaro' was grown in the basic nutrient solution of 1.6 dS.m$^{[-10]}$ which was supplemented by three levels of seawater with EC 1.0, 2.0 or 3.0 dS.m$^{[-10]}$ . Tomato plants were cultivated in cool seasons. Plant growth characteristics were compared between treatments, and fruits were classified to analyse fruit quality characteristics according to ripening stages: MG, Br, Br+3, Br+5, Br+7 and Br+10. Adding seawater generally did not affect the shoot growth parameters such as plant height, leaf length, leaf width, internode length and chlorophyll content. Adding seawater negatively affected yield parameters such as the height and weight of fruit, marketable fruit weight per plant and marketable fruit yield. Therefore, the more yield reduction was obtained with the increasing level of seawater treatment. Fruit quality was improved by seawater treatment. The degree of the effect for $^{\circ}$Bx degree and sugars were the highest with the EC of seawater 2.0~3.0 dS.m$^{[-10]}$ , and at the Br+5~Br+7 of ripening stages. The relative abundance of tomato flavor, volatile components, was not generally affected by the seawater treatment with an exception of 6-methyl-5-hepten-2-one. The relative abundance of most volatile components increased as ripening progressed. The increment began at the Br stage and showed the highest increment at the Br+5~Br+7 stages. The results from these experiments suggest that seawater treatment of EC 3.6 dS.m$^{[-10]}$ for hydroponics is good for improving tomato quality. Fruit quality is the best at the Br+5~Br+7 ripening stages. It is considered that these results may be applied far use in hydroponic culture to improve fruit quality with minimum yield reduction.

Comparison of Nutrient Replenishing Effect under Different Mixing Methods in a Closed-loop Soilless Culture using Solar Radiation-based Irrigation (적산 일사 제어법으로 관수하는 순환식 수경재배에서 배액 혼합 방식에 의한 재사용 양액 내 양분 조정효과 비교)

  • Ahn, Tae-In;Shin, Jong-Hwa;Noh, Eun-Hee;Son, Jung-Eek
    • Journal of Bio-Environment Control
    • /
    • v.20 no.4
    • /
    • pp.247-252
    • /
    • 2011
  • Electrical conductivity, drainage, and irrigation amount of nutrient solution are important factors for determination of the mixing ratio of fresh and reused nutrient solutions in closed-loop soilless culture. Generally a fixed mixing ratio is applied in commercial scale greenhouses using solar radiation-based irrigation system. Although it ensures continuous supply of fresh nutrient solution in the mixing process, occasional discharge of the drainage is inevitably required. This study was conducted to compare the nutrient replenishing effect under different mixing processes and to investigate appropriate mixing process. For this experiment, a fixed mixing ratio (FR), modifiable mixing ratio (MR), and open-loop (OP) as control were applied. Mixing ratio was determined by a set value of EC for dilution of collected drainage in FR and the set values of 1.0 and $2.0dS{\cdot}m^{-1}$ were used as treatments (FR 1.0 and FR 2.0), respectively. In MR, mixing ratio was determined based on EC and volume of drainage within irrigation volume per event. The volume of drainage stored in the drainage tank tended to increase in FR 1.0. Although such trend was not observed in FR 2.0 and MR, the volume of drainage stored in MR was lower than that in FR 2.0. The ion balance of $Mg^{2+}:K^+:Ca^{2+}$ or $SO^{2-}_4:NO^-_3:PO^{3-}_4$ in the drainage and reused nutrient solution changed within a narrow range regardless of treatment.

Effects of Different EC in Nutrient Solution on Growth and Quality of Red Mustard and Pak-Choi in Plant Factory (식물공장내 양액의 EC가 적겨자와 청경채의 생육 및 품질에 미치는 영향)

  • Lee, Sang Gyu;Choi, Chang Sun;Lee, Jun Gu;Jang, Yoon Ah;Nam, Chun Woo;Yeo, Kyung-Hwan;Lee, Hee Ju;Um, Young Chul
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.322-326
    • /
    • 2012
  • Recently, researches related to plant factory system has been activated and production of Ssam-vegetables using artificial lighting has been increasing. In South Korea, Ssam-vegetables are very popular and the consumption is increasing every year. Because leaf vegetables cultivated under hydroponic systems are more preferable rather than those cultivated by soil culture in Korea, the plant factory system would be more effective in production of Ssam-vegetables. Therefore, this study was carried out in order to analyze the yield and vitamin C contents in red mustard (Brassica juncea L.) and pak-choi (Brassica campestris var. chinensis), which are used a lot for the Ssam-vegetables in South Korea, as influenced by different concentrations of the nutrient solution in a plant factory system. As a results, there was no significant differences in the plant height among the treatment of EC in the nutrient solution, but for red mustard plants, the number of leaves tended to decrease in the treatment with higher EC. Leaf area of pak-choi plants was significantly increased in the higher EC, while the fresh weight had a tendency to increase along with increasing EC in the nutrient solution for both crops. The photosynthetic rates did not show a distinct tendency by EC levels for red mustard plants, but for pak-choi plants, it tended to be higher at the high EC. The contents of ascorbic acid in leaves were higher with decreasing EC concentration in the nutrient solution for red mustard plants, while the content was the highest at EC $2.0dS{\cdot}m^{-1}$ for pak-choi plants. In summary, considering the marketable yields and vitamin C at different nutrient concentrations in a plant factory, the optimal concentration for red mustard and pak-choi plants was thought to be EC $2.0{\sim}2.5dS{\cdot}m^{-1}$.

Effectiveness of Acid Injection as a Method to Remove $\textrm{HCO}_2$ in Hydroponic Water (양액재배 용수 중의 $\textrm{HCO}_2$ 이온 제거를 위한 산 첨가의 효과와 효과적인 산 처리방법)

  • 정종운;황승재;정병룡
    • Journal of Bio-Environment Control
    • /
    • v.11 no.4
    • /
    • pp.188-192
    • /
    • 2002
  • High concentrations of HCO$_3$$^{[-10]}$ (bicarbonate ion) in hydroponic water lead to high pH and to change in solubility, and consequently inhibition of absorption of available iou. An adequate and practical method is needed to remove HCO$_3$$^{[-10]}$ in the water fur hydroponics. to compare the efficiency of HCO$_3$$^{[-10]}$ removal, the effect of injecting HNO$_3$, H$_3$PO$_4$ or H$_2$SO$_4$ was tested. Acid injection was effective to remove HCO$_3$$^{[-10]}$ Based on the assumption that an equivalent of HCO$_3$$^{[-10]}$ ion is neutralized by an equivalent of acid, KHCO$_3$ was dissolved in a double distilled water at 50, 100, 150, 200 or 250 mg.L$^{[-10]}$ concentration and either HNO$_3$, H$_3$PO$_4$ or H$_2$SO$_4$ was injected at a certain ratio, and the resulting pH change and HCO$_3$$^{[-10]}$ ion removal was measured. According to the results obtained, HCO$_3$$^{[-10]}$ in hydroponic water was titrated, and concentration of the residual HCO$_3$$^{[-10]}$ ion well correlated with the amount of acid injected.