• Title/Summary/Keyword: 양생 콘크리트

Search Result 741, Processing Time 0.022 seconds

Influence of $Na_2SO_4$ on Cement-flyash Paste and the Strength Development of Concrete ($Na_2SO_4$가 시멘트-플라이애쉬 페이스트 및 콘크리트 강도에 미치는 영향)

  • Lee, Chin-Yong;Bae, Sung-Yong;Song, Jong-Taek
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.85-94
    • /
    • 1999
  • It was investigated to evaluate the characteristics of cement-flyash paste which was affected the replacement level, curing method and chemical admixtures. The strength of cement-flyash paste was lower than that of cement paste only and the differences increased with increasing the replacement level. However, in steam curing, the strength of cement-flyash pastes was improved and specially, the early strength was effectively increased. The inclusion of $Na_2SO_4$ increased the early strength of cement-flyash paste. In addition, the strength of concrete including 30% of fly ash and $Na_2SO_4$ has improved and obtained the highest strength compared to other concrete mixes.

Strength Characteristics of Concrete Subjected ta Vertical Continuous Vibration during Initial Curing Period (초기양생 중에 수직방향 연속진동을 받은 콘크리트의 강도특성)

  • Kim Jong-Soo;Jang Hee-Suk;Kim Myung-Sik;Kim Hee-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.273-297
    • /
    • 2005
  • In construction site, there are some occasions where concrete under initial curing is being affected by nitration from nearby vibration sources. To study these effects, in this paper, strength characteristics of concrete specimens subjected to continuous vibration up to 12 hours in vertical direction after concrete placement were observed. And through the vibration time control experiment where a number of time combinations consisted of times before and after applying vibration during initial curing period were used as experimental parameters, possibility of concrete strength improvement was investigated. From the experimental results, it could be seen that the concrete strengths were mostly decreased due to the increase of vibration velocity during initial curing period. But fluctuation ratio of concrete strength did not have any close correlations with the vibration times. And results of vibration time control experiment showed that if times before applying vibration sustains at least more than 3 hours, subsequent vibrations after that hours do not affect the concrete strength in any unfavorable ways.

Influence of Water-Cement Ratios and Curing Conditions on the Diffusion Characteristics of Chloride Ion in Concrete (콘크리트의 염소이온 확산특성에 미치는 물-시멘트비 및 양생조건의 영향)

  • Bae, Su-Ho;Lee, Kwang-Myong;Kim, Jee-Sang;Jung, Sang-Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.753-759
    • /
    • 2006
  • To predict service life of concrete structures exposed to chloride attack, surface chloride concentration, diffusion coefficient of chloride ion, and chloride corrosion threshold value in concrete, are used as important factors. Of these, as the diffusion coefficient of chloride ion for concrete is strongly influenced by concrete quality and environmental conditions of structures and may significantly change the service life of structures, it is considered as the most important factor for service life prediction. The qualitative factors affecting the penetration and diffusion of chloride ion into concrete are water-cement (W/C) ratio, age, curing conditions, chloride ion concentration of given environment, wet and dry conditions, etc. In this paper the influence of W/C ratio and curing conditions on the diffusion characteristics of chloride ion in concrete was investigated through the chloride ion diffusion test. In the test, the voltages passing through the diffusion cell were measured by accelerated test method using potential difference, and then with the consideration of IR drop ratio the diffusion coefficient of chloride ion for concrete with different W/C ratios were estimated by Andrade's model. Furthermore, under different curing conditions formulas for the estimation of the diffusion coefficient of chloride ion have been proposed by the regression analysis considering the effect of W/C ratio and age.

A Study on the Compressive Strength Prediction of Crushed Sand Concrete by Non-Destructive Method (부순모래 콘크리트의 비파괴 시험에 의한 압축강도 추정에 관한 연구)

  • Kim, Myung-Sik;Baek, Dong-Il;Kim, Kang-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.75-81
    • /
    • 2007
  • Percentage that aggregate of materials that concrete composed about $70{\sim}80%$ of whole volume, therefore influence that quality of aggregate gets in concrete characteristics are very important. Schmidt hammer and ultra-sonic velocity method are commonly used for crushed sand concrete compressive strength test in a construction field. At present, various equations for prediction of strength are present, which have been used in a construction field. The purpose of this study is to evaluate the correlation between prediction strength by present equations and destructive strength to test specimen, and find out which is a suitable equation for the construction site, a strength test was carried out destructive test by means of core sampling and traditional test. The experimental parameters were concrete age, curing condition, and strength level. It is demonstrated that the correlation behavior of crushed sand concrete strength in this study good due to the perform analysis of correlation between core, destructive strength and non-destructive strength.

Strength and Mechanical Characteristics of Fiber-Reinforced Polymer Concrete (섬유보강 폴리머 콘크리트의 강도 및 역학적 특성)

  • 오병환
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.3
    • /
    • pp.147-155
    • /
    • 1992
  • 최근들어 성능이 우수하고 품질이 높은 새로운 건설소재를 개발하려는 노력이 계속되고 있다. 본 논문에서는 고강도화 및 연성확보를 위하여 폴리머 콘크리트에 섬유를 혼입한 섬유보강 폴리머 콘크리트를 제조하여 강도 및 역학적 특성을 규명하고자 하였다. 이를 위하여 포괄적인 실험연구를 수행하였으며 주요실험변수로는 강섬유의 혼입량과 채움재(filler)의 혼입량, 그리고 양생온도를 주요변수로 선정하였다. 강섬유의 혼입량은 체적비로 0%, 1%, 2%로 변화시켰으며, 채움재와 수지의 비는 1.0과 1.5로 하였다. 본 연구결과 섬유의 혼입으로 인하여 압축강도, 휨강도, 인장강도 모두 증가하였으며, 특히 인장강도의 증가가 더 크게 나타났다. 양생온도가 증가한 경우 폴리머의 중합반응이 좋아져 강도가 증가하였다. 또한 본 논문에서는 섬유보강 폴리머 콘크리트의 응력-변형도 관계곡선을 도축하였으며, 이것은 구조설계시 중요한 기초가 될 것으로 사료된다.

Hydration Characteristics according to First Curing Condition in Solid Hydrated by Hydro-Thermal Synthesis Reaction (수열합성경화체의 1차 양생조건에 따른 수화특성)

  • Kim, Jin-Man;Jung, Eun-Hye;Park, Sun-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.543-548
    • /
    • 2008
  • Solid hydrated by hydro-thermal synthesis reaction is cured two times, the first curing is the steam curing at atmospheric pressure and the second one is a high-pressure steam curing, that is autoclaving. Steam curing is to acquire the proper strength for the resistance of treatment in the first curing process, it was not evaluated properly so far. Because of ignorance about curing, some engineers even think that the dry curing is better than the steam curing. The relation between compressive strength of solid hydrated by hydrothermal synthesis reaction and curing condition are presented in this paper. In order to investigate the effect of curing on the strength properties of specimen, the hydration behavior of solid hydrated by hydro-thermal synthesis reaction has been studied over curing condition using XRD, DT-TGA and porosimeter, SEM analysis technique. The results show that the specimens which are cured with blended method of dry and steam curing appear to have better strength properties than that of dry curing and steam curing. Also, there are significant difference of hydration behavior among curing condition in the solid hydrated by hydro-thermal synthesis reaction.

A Study on Durability of Concrete According to Mix Condition by Marine Environment Exposure Experiment (해양환경폭로실험을 통한 배합조건별 콘크리트의 내구성에 관한 연구)

  • Jo, Young-Jin;Choi, Byung-Wook;Choi, Jae-Seok;Jung, Yong-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4542-4551
    • /
    • 2013
  • Recently, much attention has focused on the study of eco-friendly concrete using recycled by-products for protecting marine ecosystem and durability of concrete exposed to marine condition. This study evaluated the durabilities of 4 different type of concrete mixtures(Control, Marine, Porous, New slag) with the seawater resistance by marine environment exposure experiment and freeze-thaw resistance, resistance to chloride ion penetration considering severe deterioration environment. In this study, we conducted seawater resistance using compressive strength according to the age(7/28/56 days) of specimen and curing conditions(standard(fresh water), tidal, immersion, artificial seawater). The results show that compressive strength of concrete exposed to marine environment exposure condition was lower than those of the standard curing condition. Also, compressive strength of New slag using eco-friendly materials for protecting marine ecosystem was lower than those of other concretes, there is need to improve the performance of New slag. The results for freeze-thaw resistance showed that all mixtures have excellent, but the Porous and New slag were lower than others. Also, the more improved resistance to chloride ion penetration than those of the Marine was measured in the New slag regardless of curing condition.