• Title/Summary/Keyword: 양변위 궤환 제어기

Search Result 3, Processing Time 0.021 seconds

Implementation of PPF Controller Using Analog Circuit and Microprocessor (아날로그 회로와 마이크로 프로세서를 이용한 PPF 제어기의 구현)

  • Heo, Seok;Kim, Ki-Young;Kwak, Moon-Kyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.6
    • /
    • pp.455-462
    • /
    • 2004
  • This paper is concerned with the implementation of the active vibration suppression controller using analog circuit and microprocessor. The target active vibration controller is the positive position feedback(PPF) controller since it provides a simple algorithm suitable for both analog circuit and digital controllers. In this study, the analog PPF controller is realized using an operational amplifier and the digital PPF controller is realized using a low-cost micro-controller. The circuit diagrams are explained in detail. We then discuss the advantages and disadvantages of both methods from the view of practical implementation. Experimental results show that both implementation methods can be effectively used for the active vibration control but need to be chosen based on the mission objective.

Real-time Active Vibration Control of Smart Structure Using Adaptive PPF Controller (적응형 PPF 제어기를 이용한 지능구조물의 실시간 능동진동제어)

  • Heo, Seok;Lee, Seung-Bum;Kwak, Moon-Kyu;Baek, Kwang-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.4
    • /
    • pp.267-275
    • /
    • 2004
  • This research is concerned with the development of a real-time adaptive PPF controller for the active vibration suppression of smart structure. In general, the tuning of the PPF controller is carried out off-line. In this research, the real-time learning algorithm is developed to find the optimal filter frequency of the PPF controller in real time and the efficacy of the algorithm is proved by implementing it in real time. To this end, the adaptive algorithm is developed by applying the gradient descent method to the predefined performance index, which is similar to the method used popularly in the optimization and neural network controller design. The experiment was carried out to verify the validity of the adaptive PPF controller developed in this research. The experimental results showed that adaptive PPF controller is effective for active vibration control of the structure which is excited by either impact or harmonic disturbance. The filter frequency of the PPF controller is tuned in a very short period of time thus proving the efficiency of the adaptive PPF controller.