• Title/Summary/Keyword: 양면발전 태양전지

Search Result 7, Processing Time 0.019 seconds

양면수광형 태양전지 성능평가를 위한 이중광원활용 측정 방법

  • Kim, Su-Min;Jeong, Sang-Hun;Kim, Yong-Bae;Choe, Gyu-Seok
    • Bulletin of the Korea Photovoltaic Society
    • /
    • v.4 no.2
    • /
    • pp.6-13
    • /
    • 2018
  • 최근 산업용 태양광 발전시장에서 주목 받고 있는 양면수광형 태양전지의 경우 지면 반사광(Albedo)의 영향으로 추가적인 광생성(Photogeneration)이 발생하여 태양전지의 전환효율(Conversion efficiency)을 증가시켜 주기 때문에 시장에서 수요가 증가하고 있다. 이러한 장점에도 불구하고 몇 가지 문제에 대한 논의가 진행되고 있는데 그 중에서 가장 중요한 부분은 양면수광형 태양전지의 효율을 정의하는 부분이다. 양면수광형 태양전지의 효율을 정의하기 위하여 여러 가지 연구가 진행되었지만 현재까지 국제적인 기준이 제정되지 않아 정확한 효율의 정의가 어려운 상황이다. 양면수광형 태양전지의 성능 확인을 위한 측정 방식은 단일광원(Single light source) 조사 방식, 단일광원 분할(Single light splitter) 조사 방식, 이중광원(Double light source) 조사 방식으로 나눌 수 있다. 본고에서는 이중광원 조사 방식을 이용하여 후면 반사광의 광원을 개별적으로 정의함으로써 실제 발전 환경과 동일한 조건의 광량 정의를 통하여 다양한 지면 반사 조건에 대하여 정확한 태양전지의 전환효율을 측정하고 이를 통하여 다이오드 특성을 추출할 수 있는 측정 방식에 대하여 논하고자 한다.

  • PDF

양면형 태양전지 기술 개발 동향 -효율향상, 성능측정 및 응용기술

  • Gang, Jun-Gu;Kim, Jun-Tae
    • Bulletin of the Korea Photovoltaic Society
    • /
    • v.1 no.2
    • /
    • pp.57-64
    • /
    • 2015
  • 본고에서는 실리콘 기판을 기반으로 하는 태양전지의 효율을 높이기 위해 태양전지 전면뿐만 아니라 후면에도 전극을 배치하여 광흡수를 극대화한 양면형 태양전지의 연구 개발, 성능 측정 및 응용 기술 등에 대한 동향을 소개하고자 한다.

  • PDF

A Study on the Applicability of Double-Sided Vertical Photovoltaic Panels Based on Energy Productivity Analysis (에너지 생산성 분석 기반 양면발전형 수직 태양전지의 활용 가능성 탐색)

  • Seung-Ju Choe;Seung-Hoon Han
    • New & Renewable Energy
    • /
    • v.19 no.4
    • /
    • pp.84-97
    • /
    • 2023
  • This study aimed to investigate the feasibility and potential applications of utilizing bifacial photovoltaic (PV) panels from an architectural perspective. It also aimed to establish a foundational dataset for installation and operational guidelines for bifacial PV panels through a comparative analysis of energy production performance with single PV panels. The research encompassed several key steps, including a comprehensive literature review, calculation of solar surface radiation values, development of datasets for bifacial and single PV energy production, and a performance comparison between both approaches. The results of the study show that bifacial PV panels exhibit optimized energy production capabilities within the range of 40 to 80 degrees, contingent upon the specific installation location. Consequently, it is recommended that the installation of bifacial PV panels in Korea should primarily focus on southwest-to-west orientation. Furthermore, it was concluded that bifacial PV panels could contribute an equivalent or even superior level of energy production compared to single PV panels, even if their performance exhibited a marginally lower efficiency of 2% to 5% with an 18% power generation efficiency.

Evaluation of Power Generation Performance for Bifacial Si Photovoltaic Modules installed on Different Artificial Grass Floors (인조잔디 바닥종류에 따른 양면수광형 실리콘 태양광 모듈의 발전성능 평가)

  • Yoo, Younggyun;Seo, Yeongju;Park, Dohyun;Kim, Minsu;Jang, Hojun;Kwon, Young Hoon;Hwangbo, Chul;Kim, Woo Kyoung;Chang, Sungho
    • Journal of Energy Engineering
    • /
    • v.27 no.3
    • /
    • pp.1-9
    • /
    • 2018
  • In this study, the outdoor evaluation test was performed to characterize the highly-reflective artificial grass to be used for bifacial photovoltaic (PV) power generation system. The 60-cell n-type Si monofacial and bifacial PV modules were employed, where two types of bifacial modules were equipped with split-type and box-type junction boxes, respectively. The results showed that the split-type junction box improved the rear-side power production and thus energy yield of bifacial module compared to the box-type junction box causing the shadow effect. Highly-reflective artificial grass achieved relatively high albedo of 0.18, and excellent bifacial gain of 33%, compared to conventional artificial grass with an albedo of 0.14-0.15, and bifacial gain of 29-30%.

Analysis of Temperature and Power Generation Characteristics of Bifacial BIPV System Applied into Curtain Wall (양면형 BIPV 시스템의 커튼월 적용에 따른 온도 및 발전특성 분석)

  • Kang, Jun-Gu;Kim, Yong-Jae;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.4
    • /
    • pp.57-66
    • /
    • 2015
  • BIPV system not only produces electricity at building, but also acts as a material for building envelope. Thus, it can increase the economical efficiency of PV system by saving the cost for building materials. Bifacial solar cell can convert solar energy to electrical energy from both sides of the cell. In addition, it is designed as 3 busbar layout which is the same with ordinary mono-facial solar cells. Therefore, many of the module manufacturers can easily use the bifacial solar cells without changing their manufacturing equipments. Moreover, bifacial PV system has much potential in building application by utilizing glass-to-glass structure of PV module. However, the electrical generation of the bifacial PV module depends on the characteristics of the building surface which faces the module, as well as outdoor environment. Therefore, in order to apply the bifacial PV module to building envelope as BIPV system, its power generation characteristics are carefully evaluated. For this purpose this study focused on the electrical performance of the bifacial BIPV system through the comparative outdoor experiments. As a result, the power generation performance of the bifacial BIPV system was improved by up to 21% compared to that of the monofacial BIPV system. Therefore, it is claimed that the bifacial BIPV system can replace the conventional BIPV system to improve the PV power generation in buildings.

High Efficiency Crystalline Silicon Solar Cells (고효율 단결정 실리콘 태양전지)

  • Kim, D.S.;Cho, E.C.;Cho, Y.H.;Ebong, A.U.;Min, Y.S.;Lee, S.H.
    • Solar Energy
    • /
    • v.17 no.1
    • /
    • pp.17-26
    • /
    • 1997
  • Since PESC(passivated emitter solar cell) was developed in 1985, high efficiency silicon solar cell technology based on planar technology has been improved in the order of PERC, Point Contact Solar Cell, PERL. BCSC and DSBC, which do not require photolithography, are expected to replace commercial screen printed cells because of its potential for low cost and high efficiency. In this paper, history and characteristics of each type of cells are reviewed.

  • PDF

Impact of Absorber Thickness on Bifacial Performance Characteristics of Semitransparent Amorphous Silicon Thin-Film Solar Cells (광흡수층 두께에 따른 투광형 비정질 실리콘 박막 태양전지의 양면발전 성능특성)

  • Seo, Yeong Hun;Lee, Ahruem;Shin, Min Jeong;Cho, Ara;Ahn, Seungkyu;Park, Joo Hyung;Yoo, Jinsu;Choi, Bo-Hun;Cho, Jun-Sik
    • Current Photovoltaic Research
    • /
    • v.7 no.4
    • /
    • pp.97-102
    • /
    • 2019
  • Bifacial and semitransparent hydrogenated amorphous silicon (a-Si:H) thin-film solar cells in p-i-n configuration were prepared with front and rear transparent conducting oxide (TCO) electrodes using plasma-enhanced chemical vapor deposition method. Fluorine-doped tin oxide and tin-doped indium oxide films were used as front and rear TCO contacts, respectively. Film thickness of intrinsic a-Si:H absorber layers were controlled from 150 nm to 450 nm by changing deposition time. The dependence of performance characteristics of solar cells on the front and rear illumination direction were investigated. For front illumination, gradual increase in the short-circuit current density (JSC) from 10.59 mA/㎠ to 14.19 mA/㎠ was obtained, whereas slight decreases from 0.83 V to 0.81 V for the open-circuit voltage (VOC) and from 68.43% to 65.75% for fill factor (FF) were observed. The average optical transmittance in the wavelength region of 380 ~ 780 nm of the solar cells decreased gradually from 22.76% to 15.67% as the absorber thickness was changed from 150 nm to 450 nm. In case of the solar cells under rear illumination condition, the JSC increased from 10.81 to 12.64 mA/㎠ and the FF deceased from 66.63% to 61.85%, while the VOC values were maintained at 0.80 V with increasing the absorber thickness from 150 nm to 450 nm. By optimizing the deposition parameters, a high-quality bifacial and semitransparent a-Si:H solar cell with 350 nm-thick i-a-Si:H absorber layer exhibited the conversion efficiencies of 7.69% for front illumination and 6.40% for rear illumination, and average visible optical transmittance of 17.20%.