• Title/Summary/Keyword: 양극 재료

Search Result 376, Processing Time 0.03 seconds

The Preparation Characteristics of Vanadium-based Cathode for Lithium Secondary Battery (리튬이차전지용 바나듐계 양극의 제초 특성)

  • ;;N. Oyama
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.395-398
    • /
    • 1998
  • Lithium insertion has been studied in a number of vanadium oxides with special regard to their application as the active materials in rechargeable lithium cells. Very high stoichiometric energy densities for lithium insertion are found for several of these materials. Some vanadium oxides, e.g. V$_2$ $O_{5}$ and V$_{6}$ $O_{13}$, are now being used in commercially developed rechargeable Li batteries. Another material which is receiving remarkable attention for this kind of cells is LiV$_3$ $O_{8}$. In variety of ternary lithium-vanadium oxides, the lithium content can be varied between certain limits without major changes in the vanadium oxygen lattice. In our worts, the oxides which do net form these thermodynamically stable bronzes can still accommodate large amounts of lithium at ambient temperature, forming kinetically stable insertion compounds. These compounds owe their existence to the whereas lithium is easily introduced into these open structures. The oxides investigated are rather poor electronic conductors; the conductivity decrease with increase in the lithium content. Improvements in the electrode fabrication technique are needed to alleviate this Problem.oblem.

  • PDF

AAO Template Morphology Controlled by Variation of Anodizing Condition (양극 산화 조건 변화에 따른 AAO Template Morphology 제어)

  • Jo, Ye-Won;Lee, Sung-Gap;Kim, Kyeong-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.4
    • /
    • pp.249-251
    • /
    • 2015
  • In this study, the application of biosensor having a large surface area for more effective and AAO (anomic aluminium oxide) template in order to gain concentration and voltage of anodizing process morphology changes to the control of experiments were conducted. The biosensor surface may increase the response characteristics by having a large surface area. So the entrance to a little more efficient wide depth sensing experiment was carried out to obtain a structure body with a branch shape with a large surface area with increasing. Experimental results from the FE-SEM observation was obtained template morphology. As a result, depending on the anodizing time, the depth of the layer of aluminum oxide was found that it was confirmed that the deepening of the pore size changes according to anodizing condition. And measuring the detection performance according to the conditions in the electrolyte and the reaction because of blood using a biosensor measuring sensing property according to the depth of the pore depth is considered that does not have a significant impact.

Changes in the Shape and Properties of the Precursor of the Rich-Ni Cathode Materials by Ammonia Concentration (암모니아 농도에 따른 Rich-Ni 양극 소재의 전구체 형태와 특성 변화)

  • Park, Seonhye;Hong, Soonhyun;Jeon, Hyeonggwon;Kim, Chunjoong
    • Korean Journal of Materials Research
    • /
    • v.30 no.11
    • /
    • pp.636-640
    • /
    • 2020
  • Due to the serious air pollution problem, interest in eco-friendly vehicles is increasing. Solving the problem of pollution will necessitate the securing of high energy storage technology for batteries, the driving force of eco-friendly vehicles. The reason for the continuing interest in the transition metal oxide LiMO2 as a cathode material with a layered structure is that lithium ions reveal high mobility in two-dimensional space. Therefore, it is important to investigate the effective intercalation and deintercalation pathways of Li+, which affect battery capacity, to understand the internal structure of the cathode particle and its effect on the electrochemical performance. In this study, for the cathode material, high nickel Ni0.8Co0.1Mn0.1(OH)2 precursor is synthesized by controlling the ammonia concentration. Thereafter, the shape of the primary particles of the precursor is investigated through SEM analysis; X-ray diffraction analysis is also performed. The electrochemical properties of LiNi0.8Co0.1Mn0.1O2 are evaluated after heat treatment.

Preparation of Nano Wire by Anodic Oxidation II. Production of Nano Wire Using Anodic Alumina Template (양극산화법에 의한 나노와이어 제조 II. 알루미나 템플레이트를 이용한 나노와이어 제조)

  • Jo, Su-Haeng;O, Han-Jun;Park, Chi-Seon;Jang, Jae-Myeong;Jo, Nam-Don;Ji, Chung-Su
    • Korean Journal of Materials Research
    • /
    • v.12 no.1
    • /
    • pp.89-93
    • /
    • 2002
  • To investigate the effect of properties of pores in anodic alumina template(AAT) on the formation and characteristics of metal nano wires, Cu and Ni nano wires were manufactured using anodic alumina template formed in various electrolytes. The characteristics of prepared metal nano wires using AAT could be replicated from those of pores in AAT. The diameters of nano wires could be controlled by the widening process of anodic porous film in $H_3PO_4$ solution. The shape ratio of the nano wire was shown to be $170{\pm}30$ for Ni nano wire formed by AAT made in sulfuric acid.

Fabrication of Anodic Aluminum Oxide on Si and Sapphire Substrate (실리콘 및 사파이어 기판을 이용한 알루미늄의 양극산화 공정에 관한 연구)

  • Kim Munja;Lee Jin-Seung;Yoo Ji-Beom
    • Korean Journal of Materials Research
    • /
    • v.14 no.2
    • /
    • pp.133-140
    • /
    • 2004
  • We carried out anodic aluminum oxide (AAO) on a Si and a sapphire substrate. For anodic oxidation of Al two types of specimens prepared were Al(0.5 $\mu\textrm{m}$)!Si and Al(0.5 $\mu\textrm{m}$)/Ti(0.1 $\mu\textrm{m}$)$SiO_2$(0.1 $\mu\textrm{m}$)/GaN(2 $\mu\textrm{m}$)/Sapphire. Surface morphology of Al film was analyzed depending on the deposition methods such as sputtering, thermal evaporation, and electron beam evaporation. Without conventional electron lithography, we obtained ordered nano-pattern of porous alumina by in- situ process. Electropolishing of Al layer was carried out to improve the surface morphology and evaluated. Two step anodizing was adopted for ordered regular array of AAO formation. The applied electric voltage was 40 V and oxalic acid was used as an electrolyte. The reference electrode was graphite. Through the optimization of process parameters such as electrolyte concentration, temperature, and process time, a regular array of AAO was formed on Si and sapphire substrate. In case of Si substrate the diameter of pore and distance between pores was 50 and 100 nm, respectively. In case of sapphire substrate, the diameter of pore and distance between pores was 40 and 80 nm, respectively

Microstructure and Growth Behaviors of Ti Anodic Oxide Film for Photocatalysis (광촉매용 Ti 양극산화 피막의 조직 및 성장거동)

  • Jang, Jae-Myeong;Oh, Han-Jun;Lee, Jong-Ho;Cho, Su-Haeng;Chi, Chung-Su
    • Korean Journal of Materials Research
    • /
    • v.12 no.5
    • /
    • pp.353-358
    • /
    • 2002
  • The microstructure and growth behaviors of anodic oxide layers on titanium were investigated. $TiO_2$ oxide films were prepared by anodizing at constant voltages of 180 and 200V in sulfuric acid electrolyte. The anodic $TiO_2$ layer formed at 200V showed a cell structure with more irregular pore shapes around the interface between the anodic oxide layer and the substrate titanium compared with that formed at 180V. Irregular shape of pores at the initial stage of anodization seemed to be attributed to spark discharge phenomena which heavily occurred during increasing voltages. The thickness of the anodic oxide film increased linearly at a rate of $1.9{\times}10^{ -1}\mu\textrm{m}$/min. The oxide layers formed at 180 and 200V were composed mainly of anatase structure, and the anodizing process could be suggested as one of fabrication methods of photocatalytic $TiO_2$.

Characterization of LiNi1/3Co1/3Mn1/3O2 Cathode Materials Prepared from Different Precursors in Lithium Rechargeable Batteries (리튬2차전지에서 다른 전구체로부터 합성된 LiNi1/3Co1/3Mn1/3O2 양극 활물질의 특성)

  • Kim, Sung-Keun;Hong, Sung-Wan;Han, Kyeong-Sik;Lee, Hong-Ki;Shim, Joong-Pyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.11
    • /
    • pp.1029-1035
    • /
    • 2008
  • $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ cathode materials prepared from different precursors in lithium rechargeable batteries were characterized by various analytical methods. $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ powders were synthesized by using solid-state reaction method and their physical and chemical properties were analyzed by XRD, SEM, particle size analyzer and TCP-AES. These materials showed different crystallinity, particle size, surface morphology and chemical composition. Also, the charge/discharge cycling of $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ electrodes was carried out under various cut-off voltages and it showed different behaviors. It was found that the electrochemical cyclability of $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ was strongly related to its crystallinity.

Growth of High Uniform Polycrystalline Grain on the Highly Ordered Porous Anodic Alumina (다공질 양극산화 피막을 이용한 고균일 다결정 살리콘의 성장)

  • Kim, Jong-Yeon;Han, Jin-Woo;Kim, Young-Hwan;Kim, Byoung-Yong;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.375-375
    • /
    • 2007
  • In the conventional crystallization method, thepoly-Si TFTs show poor device-to-device uniformity because of the random location of the grain boundaries. However, our new crystallization method introduced in this paper employed substrate-embedded seeds on the highly ordered anodic alumina template to control both the location of seeds and the number of grain boundaries intentionally. In the process of excimer laser crystallization (ELC), a-Si film deposited on the anodic alumina by low pressure chemical vapor deposition (LPCVD) is transformed into fine poly-Si grains by explosive crystallization (XC) prior to primary melting. At the higher energy density, the film is nearly completely melted and laterally grown by super lateral growth (SLG) from remained small part of the fine poly-Si grains as seeds at the Si/anodic alumina interface. Resultant grain boundaries have almost linear functions of the number of seeds in concavities of anodic alumina which have a constant spacing. It reveals the uniformity of. device can be enhanced prominently by controlling location and size of pores which contains fine poly~Si seeds under artificial anodizing condition.

  • PDF

Studies of Flame Retardant Phospbazene Derivatives for Li- ion Batteries (리튬이차전지용 난영연성 전해질인 Phosphazene의 유도체들의 열적 안정성)

  • Kim, Ke-Tack;Ahn, Se-Young;Kim, Hyun-Soo;Kim, Young-Kyu;Kim, Byung-Hwa;Nam, Sang-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.308-308
    • /
    • 2007
  • 리륨이차전지의 용량의 증가를 위한 연구에 많은 노력과 재원이 투자되고 잇는 반면에, 용량과 성능증가 추세가 주춤한 최근에는 전지의 안전성에 큰 관심이 집중되고 있다. 그 이유는 전지의 성능 못지않게 안전성에 대한 의구심이 꾸준히 제기되고 있고, 대용량 고출력전지의 대표적인 예이 자동차용 전지에는 안전성에 대한 보장이 선결되어야 하기 때문이다. 본 연구에서는 유기 전해액의 발화 및 폭발을 방지할수 있는 방법 중에서 첨가제에 의한 방법을 이용하여 그 첨가제의 전기화학적 특성 및 열적 안정성을 살펴보고 리튬이온전지에의 적용 가능성을 알아보았다. 특히 포스파젠 화합물들을 소량(1~5wt.%)첨가하여, 양극소재의 발열온도를 $60^{\circ}C$ 이상 지연시키고, 사이클 특성의 향상 및 용량의 증가도 실현함으로서 포스파젠 화합물의 유효성을 증명하였다. 아래의 Fig1은 Hexamethoxy cyclo tri-phosphazene(HMTP) 이라는 화합물의 난연성을 표기한 것인데, $270^{\circ}C$ 부근의 background peak가 $340^{\circ}C$까지 지연됨을 보여주고 있다.

  • PDF

Nano Porous Tin Oxide Film Fabricated by Anodization (양극산화법으로 제작된 나노 다공성 주석 산화물 박막)

  • Mun, Kyu-Shik;Cheon, Se-Jon;No, Hee-Kyu;Chun, Seung-Chul;Park, Sung-Yong;Lee, Ro-Un;Park, Yong-Joon;Choi, Won-Youl
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.328-328
    • /
    • 2007
  • $SnO_2$ has a high potential for electric and electronic applications. We have anodized pure tin metal and nano porous tin oxide film was obtained on pure Sn. Nano porous tin oxide were grown by anodization in nonaqueous-base electrolytes at different potentials between 5 V and 100 V. Pore size of ~100nm was observed by FE-SEM. Pore sizes as a function of applied voltage and anodizing time were characterized. We obtained nano porous tin oxide film having an uniform pore size at low temperature. High specific surface area of $SnO_2$ will be very useful for gas sensor, lithium battery, and dye sensitized solar cell.

  • PDF