• Title/Summary/Keyword: 양극산화벗김분석법

Search Result 4, Processing Time 0.02 seconds

A study on the analysis of rare earth elements by differential pulse anode stripping voltammetry (시차펄스 양극벗김 전압-전류법에 의한 희토류 원소의 분석에 관한 연구)

  • Kim, Jae-Kyun;Cha, Ki-Won
    • Analytical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.369-375
    • /
    • 2005
  • The differential pulse anode stripping voltammograms of some rare earth elements and their complexes with catechol have been investigated in various pH and electrolytes. In a 0.1 M LiCl and pH 5.3 solution, $Euv^{3+}$ and $Pr^{3+}$ showed a single oxidation peak at -0.2 V and the oxidation currents were linearly increased with the concentration of those ions. $Tm^{3+}$, $Tb^{3+}$, $Yb^{3+}$ and $Sm^{3+}$ showed two oxidation peaks at -0.5 V and -0.2 V and the oxidation currents at -0.5 V were increased with the concentration increase of those ions. The linear range of those calibration curves was in 1 ppm-10 ppm. In the case of voltammograms of catechol complexes of rare earth elements, $Tb^{3+}$-catechol and $Eu^{3+}$-catechol complex showed a single oxidation peak at -0.95 V and -0.65V, respectively and $Sm^{3+}$-catechol, $Pr^{3+}$-catechol, $Tm^{3+}$-catechol and $Yb^{3+}$-catechol complexes showed two oxidation peaks. The linear range of the calibration curves of those complex was 0.1 ppm~1.0 ppm.

Analysis and Mechanistic Investigation of Redox Process of 2-Amino-1-cyclopentene-1-dithiocarboxylate by Adsorptive Stripping Voltammetry on Glassy Carbon Electrode (Glassy Carbon 전극에서의 벗김 전압-전류법을 이용한 2-Amino-1-cyclopentene-1-dithiocarboxylate 의 분석과 전극 반응 메카니즘의 연구)

  • Yoon-Bo Shim;Duk-Soo Park;Sung-Nak Choi;Mi-Sook Won
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.37-47
    • /
    • 1988
  • The electrochemical behavior of 2-Amino-1-cyclopentene-1-dithiocarboxylate (acdc) was investigated by the use of polarography, cyclic voltammetry and cathodic stripping voltammetry at glassy carbon electrode. In this study, it was found that the dimer of the acdc was deposited on the glassy carbon electrode via one-electron oxidation process at +0.25V vs. SCE. The ring formation between two dithio group occurs along with the elimination of one sulfur atom. The elimination of sulfur atom occurs via two electron oxidation process at +0.8V vs. SCE. The most sensitive cathodic stripping peak due to the formation of the dimer was observed at -0.85V vs. SCE. The peak relationship between current and concentration was fairly linear in the range of 3${\times}10^{-5}{\sim}1.0{\times}10^{-6}$M. The preconcentration procedure enhanced the sensitivity about 100 times for the analysis of acdc using diffusion current. Detection limit was found to be $2.5{\times}10^{-7}$M and relative standard deviation was ${\pm}$4.1 % at $5.0{\times}10^{-6}$M DC polarography.

  • PDF

Evaluation of Field Application and Optimum Operational Condition for Heavy Metals Analysis Using Environment-Friendly Bismuth Film Electrode (친환경 비스무스 필름 전극을 이용한 중금속 분석 최적조건 도출 및 현장 적용성 평가)

  • Kim, So-Youn;Yang, Yong-Woon;Jeon, Sook-Lye
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.2
    • /
    • pp.137-142
    • /
    • 2011
  • This study was conducted to establish the optimal electrolyte and bismuth concentrations using bismuth film electrode in laboratory and to confirm the possibilities of using this operational condition for heavy metals monitoring in field. In lab test, heavy metal measurement was not accurate more than 600 ppb when heavy metal (Pb, Cd, Zn) range 100~1,000 ppb was measured with bismuth 2,000 ppb. So, bismuth and heavy metal was reacted about 1:1 with ASV method. In electrolyte test, 0.1 M acetate buffer (pH 4.5), 0.1 M chloroacetate buffer (pH 2.0), 0.1 M HCl (pH 2.0), 0.1 M $HNO_3$ (pH 2.0) was tested. As a results, 0.1 M acetate buffer was most suitable in ASV measurement with bismuth film electrode. In field application, Pb, Cd and Zn was measured respectively 36~45 ppb, 84~91 ppb, 90~98 ppb when heavy metal (Pb, Cd, Zn) 100 ppb was spiked in field sample. These results were identified of matrix effect in field sample, So relationship between heavy metal measurement and matrix effects will be studied.

Anodic Stripping Voltammetric Determination of Iodide Ion with a Cinchonine-Copper(Ⅱ) Complex Modified Carbon Paste Electrode (Cinchonine-Copper(Ⅱ) 착물로 변성된 탄소반죽전극을 이용한 요오드 이온의 양극벗김전압전류법 정량)

  • Kwak, Myung Keun;Park, Deog Soo;Jeong, Euh Duck;Won, Mi Sook;Shim, Yoon Bo
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.5
    • /
    • pp.341-346
    • /
    • 1996
  • Electrochemical determination of iodide was carried out by stripping voltammetry with a $(Cin)Cu(NO_3)_2$ modified-carbon paste electrode. Iodide was coordinated onto the electrode surface containing $(Cin)Cu(NO_3)_2$ via ion exchange. The oxidation peak potential of incorporated iodide was +0.72 V. The optimum analytical conditions for the determination of iodide were investigated using linear sweep voltammetry. Optimum conditions for the electrochemical determination of iodide were as follows: i) A predeposition solution was 0.1 M $KNO_3.$ ii) The deposition time was 10 min. iii) The composition of the electrode was 40% (w/w). The detection limit for iodide was $1.0{\times}10^{-6}M$ and the relative standard deviation was ${\pm}5.5%\;in\;2.0{\times}10^{-5}M$(four repetitions). The interference effect of other anions were also investigated. $Cl^-,\;Br^-,\;C_2O_4^{2-},\;and\;ClO_4^-$ ions do not interfere for the determination of iodide. When $SCN^-$ was added to the deposition solution, the oxidation peak current of iodide ion was decreased roughly 32%.

  • PDF