• Title/Summary/Keyword: 양광관

Search Result 6, Processing Time 0.021 seconds

Total Dynamic Analysis of Deep-Seabed Integrated Mining System (심해저 광물자원 채광시스템의 통합거동 해석)

  • Kim, Hyung-Woo;Hong, Sup;Lee, Chang-Ho;Choi, Jong-Su;Yeu, Tae-Kyeong
    • Journal of Navigation and Port Research
    • /
    • v.34 no.3
    • /
    • pp.195-203
    • /
    • 2010
  • This paper concerns about total dynamic analysis of integrated mining system. This system consists of vertical steel pipe, intermediate buffer station, flexible pipe and self-propelled miner. The self-propelled miner and buffer are assumed as rigid-body of 6-dof. Discrete models of vertical steel pipe and flexible pipe are adopted, which are obtained by means of lumped-parameter method. The motion of mining vessel is not considered. Instead, the motion of mining vessel is taken into account in form of various boundary conditions (e.g. forced excitation in slow motion and/or fast oscillation and so on). A terramechanics model of extremely cohesive soft soil is applied to the self-propelled miner. Hinged and ball constraints are used to define the connections between sub-systems (vertical steel pipe, buffer, flexible pipe, self-propelled miner). Equations of motion of the coupled model are derived with respect to the each local coordinates system. Four Euler parameters are used to express the orientations of the sub-systems. To solve the equations of motion of the total dynamic model, an incremental-iterative formulation is employed. Newmark-${\beta}$ method is used for time-domain integration. The total dynamic responses of integrated mining system are investigated.

A Study on the Efficient Flexible Multibody Dynamics Modeling of Deep Seabed Integrated Mining System with Subsystem Synthesis Method (부분시스템 합성방법을 이용한 심해저 통합 채광시스템의 효율적인 유연 다물체 동역학 모델링 연구)

  • Yun, Hong-Seon;Kim, Sung-Soo;Lee, Chang Ho;Kim, Hyung-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.12
    • /
    • pp.1213-1220
    • /
    • 2015
  • A deep seabed integrated mining system consists of a mining vessel, a lifting pipe, a buffer station, a flexible pipe, and a mining robot for collecting manganese nodules. Recently, the concept of multiple mining robots was introduced to enhance to mining productivity. In this paper, the subsystem synthesis method was applied to the deep seabed integrated mining system in order to improve the efficiency of system analysis and to facilitate its extension to the system of multiple mining robots. Large deflections of the lifting and flexible pipe were considered by dividing a flexible pipe into several substructures, and applying flexible multibody dynamics to each substructure. Theoretical study has been carried out for the efficiency of the subsystem synthesis method for the integrated mining system, by comparing the arithmetic operational counts of the subsystem synthesis method with those of the conventional method.

Automatic reentry of deepsea riser by adaptive control (적응제어에 의한 대수심 라이저의 리엔트리)

  • 남동호
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.108-118
    • /
    • 1996
  • This paper presents automatic reentry of a deepsea reser by adaptive control. Reentry is one of the major pro blems regarding a deepsea riser. In the reentry operation, the lower end of riser must be accurately positioned over the tarket point on the seabed. But the deepsea riser shows complex elastic response due to flexibility and nonlinearity of the riser dynamics and the required positioning accuracy is high. Moreover, elastic deformation must by controlled for securing structural integrity. In adaptive control, uncertainly known parameters like added mass and drag coefficient in the riser dynamics are identified and control forces at the floating body and the riser are calculated simultaneously. An Adaptive algorithm for MIMO linear discrete time system without requiring a persistent excitation is adopted in this study. The effectiveness of adaptive control logic is tested by numerical simulation and model experiment. The designed control system shows good overall performances, so that the present study can be applied to the control of the deepsea riser.

  • PDF

Dynamic Position Control Method for the Buffer Unit of a Deepsea Mining System (해석심해자원개발용 버퍼의 동적위치제어기법)

  • Kim, Ki-Hun;Choi, Hang-S.;Hong, Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.3
    • /
    • pp.57-63
    • /
    • 2002
  • This paper describes a control algorithm for the buffer of a deep-sea mining system, in which the buffer is connected to a long slender pipe and then to a surface ship on one end, and to a collector on sea floor through a flexible hose on the other end. A mathematical modeling is established for designing the controller for buffer thrusters, in which the dynamic response of the long pipe is taken into account based on the mode superposition method. The fluid loading acting on the pipe is estimated by using Morison's formula. For simplicity, the surface ship is assumed to be kept stationary, the reaction from the flexible hose is ignored and only the lateral motions are considered. In order to guide the buffer to react only to the low-frequency motion of the surface vessel, the FIR digital filter is introduced to a PID-based controller It can be shown numerically that the high frequency component of the ship's motion can be effectively filtered out by using the FIR low pass filter.

Analysis of Structural Characteristics of HDPE Pipe for Manganese Lifting Test (근해역 양광시험을 위한 HDPE Pipe의 구조특성 연구)

  • Lee, Jae-Hwan;Yoon, Chi-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.86-90
    • /
    • 2011
  • The mining of imitated manganese noodles in 1000 m of seawater is planned for 2012. Thus, it is necessary to prepare the lifting pipes to be used for the test. Because of storage and expense constraints, flexible and economic HDPE pipe is being considered, making it necessary to test the structural safety. Material, pressure-chamber tests and finite element analysis of HDPE pipe for the 1000-m depth were performed. The tangential stiffness of HDPE was obtained through tension and three-point bending material tests and used for a structural analysis. FEA results show that the current sample pipe segment is safe for 1000 m of water pressure, and the stress result is also within the safe value. From the current results, the HDPE pipe seems to be acceptable only for the currently suggested constraints. However, more numerical and pressure tests need to be considered by applying additional physical conditions such as gravitational and hydrodynamic loads, external and internal fluid pressure, axial force induced ship motion, and heavy pump pressure to determine future usage.

Design of a Decentralized Controller for Deep-sea Mining System (심해저 채광시스템에 대한 분산제어기 설계에 관한 연구)

  • Yeu, Tae-Kyeong;Park, Soung-Jea;Hong, Sup;Kim, Hyung-Woo;Choi, Jong-Su
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.3
    • /
    • pp.252-259
    • /
    • 2008
  • The deep-sea mining system is generally composed of surface vessel, lifting system, buffer, flexible pipe and miner. The mining system can be regarded as a large-scale system in which each subsystem is interconnected to other ones. In order to control a large-scale system, decentralized control approaches have been proposed recently. In this paper, as a basic study on application of decentralized control, firstly, the mining system was modeled in a simplified way. Lifting system and buffer were regarded as a spherical pendulum and the flexible pipe was taken as a two-dimensional linear spring connection. Based on the simplified model dynamics, the mining system can be decentralized two subsystems, the one consisting of surface vessel, lifting system and buffer, and the other, the miner. Next, this paper proposed the design of controller for each decentralized subsystem by regarding the interacting terms as disturbances. The controllers kept the constant distance between two subsystems during the miner was moving on the specified track. Finally, the efficiency of proposed controller was proven through the numerical simulation of the derived model.