• Title/Summary/Keyword: 양각금형

Search Result 5, Processing Time 0.019 seconds

Characteristics of Tool Wear and Surface Roughness using for Hybrid Lubrication in Micro-Milling Process of Flexible Fine Die (플렉서블 양각금형의 마이크로 밀링가공에서 하이브리드 윤활공정에 따른 공구마멸과 표면조도 특성)

  • Kim, Min-Wook;Ryu, Ki-Teak;Kang, Myung-Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.30-36
    • /
    • 2013
  • An FFD(flexible fine die) is an embossed mold that consists of a thin plate ranging from 0.6 to 3 mm in thickness. FFDs are primarily used for cutting LCD films and F-PCB sheets. In the high-speed micro-milling process of flexible fine dies, the lubrication and cooling of the cutting edges is very important from the aspect of eco machining and cutting performance. In this paper, a comparative study of tool wear and surface roughness between cutting fluid and hybrid lubrication for eco-machining of FFD was conducted for processes of high-speed machining of highly hardened material (STC5, HRC52). Especially, the incorporated fluid method for eco machining, in which the cutting performances can be simultaneously measured, was introduced. The machining results show that hybrid lubrication, instead of conventional cutting fluid, leads to excellent tool wear and surface roughness and represents the proper conditions for eco micro-machining of flexible fine dies.

Study on the gate cutting of light guiding plate for mobile using quenching element (박형 도광판의 음각, 양각 마이크로 패턴 성형성에 관한 연구)

  • Hwang, Chul-Jin;Kim, Jong-Sun;Min, In-Gi;Kim, Jong-Dug;Yoon, Kyung-Hwan
    • Design & Manufacturing
    • /
    • v.2 no.5
    • /
    • pp.1-4
    • /
    • 2008
  • LCD-BLU (Liquid Crystal Display - Back Light Unit) is one of kernel parts of LCD unit and it consists of several optical sheets(such as prism, diffuser and protector sheets), LCP (Light Guide Plate), light source (CCFL or LED) and mold frame. The LGP of LCD-BLU is usually manufactured by forming numerous dots with $50-200{\mu}m$ in diameter on it by erosion method. But the surface of the erosion dots of LGP is very rough due to the characteristics of the erosion process during the mold fabrication, so that its light loss is high along with the dispersion of light into the surface. Accordingly, there is a limit in raising the luminance of LCD-BLU. Especially, the negative and positive micro-lens pattern fabricated by modified LiGA with thermal reflow process was applied to the optical design of LGP.

  • PDF

Replication of concave and convex microlens array of light guide plate for liquid crystal display in injection molding (음각, 양각 광학패턴 적용 휴대폰용 도광판 금형 제작 및 광특성 연구)

  • Hwang, Chul Jin;Kim, Jong Sun;Kang, Jeong Jin;Hong, Seokkwan;Yoon, Kyung Hwan
    • Design & Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.29-32
    • /
    • 2008
  • A back light unit (BLU) is a key module of a thin film transistor liquid crystal display (TFT-LCD), frequently utilized in various mobile displays. In this study, we experimentally characterize transcription and optical properties of concave and convex microlens arrays (MLAs) of light guide plate (LGP) fabricated by injection molding with polycarbonate as a LGP substrate material. Nickel mold inserts were manufactured by electroforming on the MLA which was fabricated by the thermal reflow of photoresist microstructures patterned by UV-photolithography. For the case of convex microlens, the height of replicated microlens was less than that of the mold insert while maintaining almost the same microlens diameter of the mold insert as the location of the microlens is far from the gate. In contrast, for the concave microlens, the diameter of replicated microlens was larger than that of mold insert, while showing almost the same microlens height as the mold insert. From the optical examination of replicated convex and concave MLAs, it was found that a higher luminance of the LGP was achieved by the concave MLAs compared to the convex MLAs (about 30% enhancement in this case)due to the utilization of a larger amount of light provided by the light sources.

  • PDF

A Study on the Effect of Optical Characteristic in 2 inch LCD-BLU by Negative and Positive Optical Pattern : II. Mold and Light Characteristics (휴대폰용 2인치 LCD-BLU의 광특성에 미치는 음각 및 양각 광학 패턴의 영향 연구 : II. 금형 및 광특성)

  • Hwang C.J.;Ko Y.B.;Kim J.S.;Min I.K.;Yu J.W.;Yoon K.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.339-340
    • /
    • 2006
  • Recently, many researches have been done to improve optical performance of LCD-BLU(Back Light Unit). One of the most important parts in LCD-BLU is LGP(Light Guiding Plate). Micro-patterned LGP is known to have different optical characteristics depending on their shape, pattern density and size, etc. In the present study, a micro-optical patterned LGP mold was fabricated using LiGA process. The difference in the optical characteristics between positive and negative patterned LGP's was investigated by fixing the density, location and size of each pattern. It was found that the negative patterned LGP showed better optical characteristics than positive one.

  • PDF