• 제목/요약/키워드: 약한 인공지능

검색결과 172건 처리시간 0.033초

화재 재난 상황 인식을 위한 객체 검출 (Object detection for Fire Disaster Situation Recognition)

  • 김태성;방재연;서정운;손경아
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.426-428
    • /
    • 2022
  • 화재 상황에서의 빠른 현장 파악은 인명피해를 줄이는데 중요한 요소이다. 기존 연구의 화재와 관련된 데이터셋들은 대부분 불과 연기를 라벨링하여 화재의 예방에 초점을 두고 있다. 본 연구에서는 화재 상황에서 사람과 소방관, 연기, 불을 탐지하는 Object detection 모델을 만들어 현장 파악에 더욱 도움을 주고자 하였다. 이를 위해 화재 상황 이미지 약 3000장을 수집하고 라벨링하여 데이터셋을 구성하였으며 이를 이용해 객체 검출 모델인 RetinaNet을 학습하였다. 또한, 화재 상황에서 Object Detection 모델의 성능을 향상시키기 위해 기존 모델인 RetinaNet에 Dehazing(FFA-Net), Smoke augmentation, semi-supervised(ISD) 방법을 적용하였고, semi-supervised 조건에서 mAP 63.7로 가장 높은 성능을 도출하였다.

DNN을 이용한 중환자 상태 징후 조기 예측 (An Efficient Dynamic Workload Balancing Strategy)

  • 윤현석;박길식;주해종
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.325-327
    • /
    • 2024
  • 국내외에서 AI기반 의료 솔루션 시장은 빠른 속도로 확장 중이며 이에 따른 다양한 의학 분야에서 많은 기법을 통한 의료 AI 시스템이 등장하고 있다. 그러나 기존 다양한 AI 연구가 이뤄짐에도 아직 중환자의 징후 예측에는 많은 어려움이 있다. 또한, 중환자의 경우 현재 의료진만으로 모든 환자를 필요한 시기에 진료하기엔 어려움이 있고 환자 상태 조기 예측이 필수적임을 관련 다양한 의학 기사를 통해 쉽게 인지할 수 있다. 본 연구에서는 위와 같은 문제점을 해결하고자 중환자의 진료 결과 데이터를 활용하여 환자의 진료 후 상태를 예측하는 모델을 생성하였다. '용인시산업진흥원'에서 제공하는 60만여 건에 달하는 환자 데이터를 수집하여, 중환자 상태 징후를 조기에 예측할 수 있는 머신러닝/딥러닝 기반 알고리즘으로 구현한 여러 모델에 대해 비교했을 때 딥러닝(DNN) 기반 모델이 약 92%의 분류 정확도를 측정할 수 있었다.

  • PDF

준지도 학습 기반의 멀웨어 탐지 기법 (Semi-supervised learning based malware detection technique)

  • 전유란;심혜연;이일구
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.254-257
    • /
    • 2024
  • 5G 통신과 인공지능 기술이 발전하고, 사물인터넷 기기의 수가 증가함에 따라 종래의 정보보호체계를 우회하는 지능적인 사이버 공격이 증가하고 있다. 그러나, 종래의 기계학습 기반 멀웨어 탐지 방식은 이미 알려진 멀웨어만 탐지할 수 있으며, 새로운 멀웨어는 탐지가 어렵거나, 기존의 알려진 멀웨어로 잘못 분류되는 문제가 있다. 본 연구에서는 비지도학습을 사용하여 알려지지 않은 멀웨어를 탐지하고, 새롭게 탐지된 멀웨어를 새로운 라벨로 분류하여 재학습하는 준지도 학습 기반의 멀웨어 탐지 기법을 제안한다. 다양한 데이터 환경에서 알려지지 않은 멀웨어 데이터가 탐지 모델로 입력될 때 제안한 방식의 성능을 평가했다. 실험 결과에 따르면 제안한 준지도 학습 기반의 멀웨어 탐지 방법은 종래의 방식 대비 정확도를 약 16% 개선했다.

고주파에 적합한 교차 엔트로피 손실함수에 대한 초해상도 (Super-Resolution with Cross-Entropy Loss Adapted to High Frequencies)

  • 오윤주;김태현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.709-710
    • /
    • 2024
  • Super resolution에서 High-frequency Details를 개선하는 것이 최근 문제이다. 기존에는 Super resolution을 Regression task로 접근하므로써 L2 Loss를 사용하여 이미지가 흐릿하게 되었다. 이를 해결하기위해, Classification task로 바꾸므로써 Cross Entropy Loss을 적용하여 Cross-entropy Super-resolution (CS)를 설계한다. CS를 통해 선명도와 Details이 개선되지만, 저주파의 CE Loss 학습으로인한 Black Artifacts가 발생한다. 그래서, L2 Loss는 저주파와 같이 큰 신호에 더 초점을 맞추므로, 성능 개선을 위해 저주파를 L2 Loss에서, 고주파를 CE Loss에서 학습시킨 Frequency-specific Cross-entropy Super-resolution (FCS)을 제안한다. 우리는 왜곡에 강하며 Human의 인식과 유사한 측정지표인 Learned Perceptual Image Patch Similarity (LPIPS)로 평가한다. 실험한 모든 데이터 셋에서 우리의 FCS는 Baseline보다 LPIPS가 약 1.7배 정도 개선되었다.

빅데이터 기법을 활용한 Data Technology의 키워드 분석 (Keyword Analysis of Data Technology Using Big Data Technique)

  • 박성욱
    • 기술혁신학회지
    • /
    • 제22권2호
    • /
    • pp.265-281
    • /
    • 2019
  • 경제가 성장하고 인터넷이 발전되면서 사람들의 경제형태와 소비는 많이 바뀌었다. 중국 알리바바 그룹은 모바일, 온라인, 오프라인, 인공지능을 결합한 플랫폼으로 약 28조의 매출을 창출하고 있다. 이는 1초에 약 25만건을 처리하는 수준이며, 2016년 대비 40% 증가했다. 이를 가능하게 한 핵심 기술은 소위 Data Technology라고 불리는 빅데이터와 클라우드 컴퓨팅이 융합된 기술이다. 기술의 발전속도에 비해 Data Technology에 관한 정확한 개념적 정의는 부족하다. 이에 본 논문은 빅데이터 분석기법인 TexTom을 활용하여 구글과 네이버의 최근 3개년(2015년 11월~2018년 11월) 신문기사를 데이터 마이닝 및 정제하여 'Data Technology' 키워드로 한정하여 관련 핵심 키워드를 도출하였다. 그 결과 빅데이터, O2O, 인공지능, 사물인터넷, 클라우드 컴퓨팅의 핵심 키워드 기술이 Data Technology와 관계가 있음을 알수 있었다. 본 연구의 분석결과는 향후 Data Technology 시대가 도래되면 참고할 수 있는 유용한 정보로 활용될 수 있다.

인공신경망기반의 최대 지진해일고 예측 (Prediction of maximum tsunami heights using neural network)

  • 송민종;조용식
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.484-484
    • /
    • 2023
  • 지진해일은 해저지진, 화산활동, 해저 산사태 등에 의해 발생되는 장주기 파랑이다. 지진해일은 발생빈도가 낮지만, 한번 발생하면 많은 에너지가 연안으로 유입되어 인명 및 재산피해를 야기 시킬 수 있다. 따라서, 과거 수십년동안 지진해일에 대한 연구는 지진해일의 역학관계를 이해하고, 이를 바탕으로 한 수치모델 개발에 초점을 두어 연구가 진행되어 왔다. 더욱이, 지진해일 실험적 연구는 많은 경제적 비용을 지불해야 하기에 수치모델개발 연구가 더욱 중점적으로 수행되어 왔다. 지리학적으로 우리나라는 지진해일에 안전하지 못하다. 하나의 예로, 1983년 5월 26일, 일본 서해안에서 발생한 지진해일은 동해로 전파되어 동해안 지역에 커다란 피해를 야기시켰다. 이 당시, 강원도삼척시 원덕읍에 위치한 임원항에서는 2명의 사상자와 2명의 부상자가 발생하였고, 당시 금액으로 약3억원의 재산피해가 발생하였다. 이 연구는 인공지능 기법 중 하나인 인공신경망을 이용하여 인명과 재산피해가 발생한 임원항에서 최대지진해일고를 예측하고자 하였다. 지진해일 수치모델은 뛰어난 정확도를 나타내는 반면, 결과를 산출하는데 상당한 시간을 필요로 한다. 이에 반해, 인공신경망은 수치모델과 유사한 정확도 및 결과를 신속하게 제공할 수 있다는 장점을 가지고 있다. 지진해일 인공신경망 모델 개발은 지진의 단층파라미터를 바탕으로 작성된 지진해일의 시나리오를 토대로 연구가 진행되었고, 우리나라 동해에 위치한 외해 관측 지점의 지진해일고 자료를 통해, 임원항에서의 최대 지진해일고가 예측되도록 개발되었다. 이를 위하여, 인공신경망의 학습 및 검증 과정을 수행하였고, 향후 발생 가능한 다양한 지진해일에 대해 평가함으로써, 인공신경망 모델의 예측성능을 확인하였다.

  • PDF

신경회로망과 퍼지 인지 맵(FCM)을 이용한 대뇌피질의 정보처리 모델 (Information Process Model of Cerebral Cortex Using Neural Network and Fuzzy Cognitive Map)

  • 서재용;김성주;연정흠;전홍태
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 춘계 학술대회 학술발표 논문집
    • /
    • pp.73-76
    • /
    • 2003
  • 신경생리학적으로 밝혀진 바에 의하면, 대뇌의 시상에 분포한 일차 감각영역에서 감각 정보를 수집한다. 수집된 감각 정보는 과거 기억과의 비교를 통해 인식되고 인식된 정보는 일차 운동영역으로 전달되어 행동으로 나타난다. 수집된 감각 정보를 판단하는 기관은 감각 연합 영역으로 알려져 있으며, 과거 정보를 통해 비교하여 판단하는 방식이다. 하지만, 과거 기억 정보로 존재하지 않는 새로운 감각 입력에 대해서는 대뇌피질 내의 파페츠 회로를 통해 새로이 기억하게 된다. 이 과정에는 변연계의 편도체(Amygdala)의 감정 반응을 이용하여 강한 감정 반응을 유도하는 감각 입력에 대해서는 강한 기억을 하게 되고, 반대의 경우에는 약한 기억을 하게 되는 특징이 고려된다. 본 논문에서는 기억되지 않은 새로운 감각 자극에 대해 감정 반응 정도에 따라 기억되는 정도의 변화를 관찰할 수 있는 모델을 제시하고자 한다. 이 모델은 대뇌피질의 정보 처리 및 감각 학습 과정을 인공적으로 구현하는 과정에 바탕이 될 것이다.

  • PDF

광섬유 복합가공 지선(OPGW) 설비 안전점검을 위한 VGGNet 기반의 이상 탐지 (Anomaly Detection using VGGNet for safety inspection of OPGW)

  • 강건하;손정모;손도현;한정호
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제65차 동계학술대회논문집 30권1호
    • /
    • pp.3-5
    • /
    • 2022
  • 본 연구는 VGGNet을 사용하여 광섬유 복합가공 지선 설비의 양/불량 판별을 수행한다. 광섬유 복합가공 지선이란, 전력선의 보호 및 전력 시설 간 통신을 담당하는 중요 설비로 고장 발생 전, 결함의 조기 발견 및 유지 관리가 중요하다. 현재 한국전력공사에서는 드론에서 촬영된 영상을 점검원이 이상 여부를 점검하는 방식이 주로 사용되고 있으나 이는 점검원의 숙련도, 경험에 따른 정확성 및 비용과 시간 측면에서 한계를 지니고 있다. 본 연구는 드론에서 촬영된 영상으로 VGGNet 기반의 양/불량 판정을 수행했다. 그 결과, 정확도 약 95.15%, 정밀도 약 96%, 재현율 약 95%, f1 score 약 95%의 성능을 확인하였다. 결과 확인 방법으로는 설명 가능한 인공지능(XAI) 알고리즘 중 하나인 Grad-CAM을 적용하였다. 이러한 광섬유 복합가공 지선 설비의 양/불량 판별은 점검원의 단순 작업에 대한 비용 및 점검 시간을 줄이며, 부가가치가 높은 업무에 집중할 수 있게 해준다. 또한, 고장 결함 발견에 있어서 객관적인 점검을 수행하기 때문에 일정한 점검 품질을 유지한다는 점에서 적용 가치가 있다.

  • PDF

천문 고문헌 특화 인공지능 자동번역 서비스의 현황 (Current status of automatic translation service by artificial intelligence specialized in Korean astronomical classics)

  • Seo, Yoon Kyung;Kim, Sang Hyuk;Ahn, Young Sook;Choi, Go-Eun;Choi, Young Sil;Baik, Hangi;Sun, Bo Min;Kim, Hyun Jin;Choi, Byung Sook;Lee, Sahng Woon;Park, Raejin
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.64.3-65
    • /
    • 2021
  • 인공지능 기계학습에 의한 한문고전 자동번역기는 승정원일기 뿐만 아니라, 한국 고문헌 중 천문 기록에 특화되어 한자로 된 천문 고전을 한글로 번역해 서비스하고 있다. 한국천문연구원은 한국지능정보사회진흥원이 주관하는 2019년도 Information and Communication Technology 기반 공공서비스 촉진사업에 한국고전번역원과 공동 참여하여 이 자동 번역기 개발을 완료한 것이다. 이 번역기의 개발 목적은 초벌 번역 수준일지라도 문장 형태의 한문을 한글로 자동 번역하는 것이며, 이 연구는 현재 번역기 운용 현황을 서비스 별로 분석하고자 한다. 자동 번역관련 서비스는 크게 3가지이다. 첫째, 누구나 웹 접속을 통해 사용 가능한 한문고전 자동번역 대국민 서비스이다. 1년간 자체 시험을 거쳐 2021년 1월 12일 시험판을 오픈하여 운용 중에 있다. 둘째, 기관별로 구축된 코퍼스와 도메인 특화된 번역 모델 등을 관리할 수 있는 한문고전 자동번역 확산 플랫폼 서비스이다. 대국민 서비스와 함께 클라우드 기반으로 서비스되며, 한국고전번역원이 관리를 담당한다. 셋째, 자동번역 Applied Programmable Interface를 활용한 한국천문연구원 내 자체 활용이 가능한 천문고전 자동번역 서비스이다. 서비스 현황 분석은 기관별 관리 서비스에 해당되는 한문고전 자동번역 확산 플랫폼에서 집계하여 제공하는 대시보드의 통계 기능을 활용한다. 각 서비스별 문장과 파일 번역 이용 건수, 번역 속도, 평균 자수 뿐만 아니라, 번역 모델 프로필에 따른 이용률 분석이 가능하다. 이에 따른 주요 분석 중 하나인 올해 전체 번역 이용 건수는 한 해 각 기관의 평균 방문자수 대비 87% 성과 목표에 해당되는 약 38만 건에 근접할 것으로 예측된다. 이 자동 번역기는 원문 해독 시간을 단축시키는 효과와 함께 미번역 천문 고문헌의 활용성을 높여 다양한 연구에 기여할 것이다.

  • PDF

적대적 공격을 방어하기 위한 StarGAN 기반의 탐지 및 정화 연구 (StarGAN-Based Detection and Purification Studies to Defend against Adversarial Attacks)

  • 박성준;류권상;최대선
    • 정보보호학회논문지
    • /
    • 제33권3호
    • /
    • pp.449-458
    • /
    • 2023
  • 인공지능은 빅데이터와 딥러닝 기술을 이용해 다양한 분야에서 삶의 편리함을 주고 있다. 하지만, 딥러닝 기술은 적대적 예제에 매우 취약하여 적대적 예제가 분류 모델의 오분류를 유도한다. 본 연구는 StarGAN을 활용해 다양한 적대적 공격을 탐지 및 정화하는 방법을 제안한다. 제안 방법은 Categorical Entropy loss를 추가한 StarGAN 모델에 다양한 공격 방법으로 생성된 적대적 예제를 학습시켜 판별자는 적대적 예제를 탐지하고, 생성자는 적대적 예제를 정화한다. CIFAR-10 데이터셋을 통해 실험한 결과 평균 탐지 성능은 약 68.77%, 평균정화성능은 약 72.20%를 보였으며 정화 및 탐지 성능으로 도출되는 평균 방어 성능은 약 93.11%를 보였다.