• Title/Summary/Keyword: 약한 인공지능

Search Result 172, Processing Time 0.018 seconds

A Study on the Revitalization of Tourism Industry through Big Data Analysis (한국관광 실태조사 빅 데이터 분석을 통한 관광산업 활성화 방안 연구)

  • Lee, Jungmi;Liu, Meina;Lim, Gyoo Gun
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.149-169
    • /
    • 2018
  • Korea is currently accumulating a large amount of data in public institutions based on the public data open policy and the "Government 3.0". Especially, a lot of data is accumulated in the tourism field. However, the academic discussions utilizing the tourism data are still limited. Moreover, the openness of the data of restaurants, hotels, and online tourism information, and how to use SNS Big Data in tourism are still limited. Therefore, utilization through tourism big data analysis is still low. In this paper, we tried to analyze influencing factors on foreign tourists' satisfaction in Korea through numerical data using data mining technique and R programming technique. In this study, we tried to find ways to revitalize the tourism industry by analyzing about 36,000 big data of the "Survey on the actual situation of foreign tourists from 2013 to 2015" surveyed by the Korea Culture & Tourism Research Institute. To do this, we analyzed the factors that have high influence on the 'Satisfaction', 'Revisit intention', and 'Recommendation' variables of foreign tourists. Furthermore, we analyzed the practical influences of the variables that are mentioned above. As a procedure of this study, we first integrated survey data of foreign tourists conducted by Korea Culture & Tourism Research Institute, which is stored in the tourist information system from 2013 to 2015, and eliminate unnecessary variables that are inconsistent with the research purpose among the integrated data. Some variables were modified to improve the accuracy of the analysis. And we analyzed the factors affecting the dependent variables by using data-mining methods: decision tree(C5.0, CART, CHAID, QUEST), artificial neural network, and logistic regression analysis of SPSS IBM Modeler 16.0. The seven variables that have the greatest effect on each dependent variable were derived. As a result of data analysis, it was found that seven major variables influencing 'overall satisfaction' were sightseeing spot attraction, food satisfaction, accommodation satisfaction, traffic satisfaction, guide service satisfaction, number of visiting places, and country. Variables that had a great influence appeared food satisfaction and sightseeing spot attraction. The seven variables that had the greatest influence on 'revisit intention' were the country, travel motivation, activity, food satisfaction, best activity, guide service satisfaction and sightseeing spot attraction. The most influential variables were food satisfaction and travel motivation for Korean style. Lastly, the seven variables that have the greatest influence on the 'recommendation intention' were the country, sightseeing spot attraction, number of visiting places, food satisfaction, activity, tour guide service satisfaction and cost. And then the variables that had the greatest influence were the country, sightseeing spot attraction, and food satisfaction. In addition, in order to grasp the influence of each independent variables more deeply, we used R programming to identify the influence of independent variables. As a result, it was found that the food satisfaction and sightseeing spot attraction were higher than other variables in overall satisfaction and had a greater effect than other influential variables. Revisit intention had a higher ${\beta}$ value in the travel motive as the purpose of Korean Wave than other variables. It will be necessary to have a policy that will lead to a substantial revisit of tourists by enhancing tourist attractions for the purpose of Korean Wave. Lastly, the recommendation had the same result of satisfaction as the sightseeing spot attraction and food satisfaction have higher ${\beta}$ value than other variables. From this analysis, we found that 'food satisfaction' and 'sightseeing spot attraction' variables were the common factors to influence three dependent variables that are mentioned above('Overall satisfaction', 'Revisit intention' and 'Recommendation'), and that those factors affected the satisfaction of travel in Korea significantly. The purpose of this study is to examine how to activate foreign tourists in Korea through big data analysis. It is expected to be used as basic data for analyzing tourism data and establishing effective tourism policy. It is expected to be used as a material to establish an activation plan that can contribute to tourism development in Korea in the future.

Introduction and Evaluation of the Production Method for Chlorophyll-a Using Merging of GOCI-II and Polar Orbit Satellite Data (GOCI-II 및 극궤도 위성 자료를 병합한 Chlorophyll-a 산출물 생산방법 소개 및 활용 가능성 평가)

  • Hye-Kyeong Shin;Jae Yeop Kwon;Pyeong Joong Kim;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1255-1272
    • /
    • 2023
  • Satellite-based chlorophyll-a concentration, produced as a long-term time series, is crucial for global climate change research. The production of data without gaps through the merging of time-synthesized or multi-satellite data is essential. However, studies related to satellite-based chlorophyll-a concentration in the waters around the Korean Peninsula have mainly focused on evaluating seasonal characteristics or proposing algorithms suitable for research areas using a single ocean color sensor. In this study, a merging dataset of remote sensing reflectance from the geostationary sensor GOCI-II and polar-orbiting sensors (MODIS, VIIRS, OLCI) was utilized to achieve high spatial coverage of chlorophyll-a concentration in the waters around the Korean Peninsula. The spatial coverage in the results of this study increased by approximately 30% compared to polar-orbiting sensor data, effectively compensating for gaps caused by clouds. Additionally, we aimed to quantitatively assess accuracy through comparison with global chlorophyll-a composite data provided by Ocean Colour Climate Change Initiative (OC-CCI) and GlobColour, along with in-situ observation data. However, due to the limited number of in-situ observation data, we could not provide statistically significant results. Nevertheless, we observed a tendency for underestimation compared to global data. Furthermore, for the evaluation of practical applications in response to marine disasters such as red tides, we qualitatively compared our results with a case of a red tide in the East Sea in 2013. The results showed similarities to OC-CCI rather than standalone geostationary sensor results. Through this study, we plan to use the generated data for future research in artificial intelligence models for prediction and anomaly utilization. It is anticipated that the results will be beneficial for monitoring chlorophyll-a events in the coastal waters around Korea.