• Title/Summary/Keyword: 약광물

Search Result 552, Processing Time 0.03 seconds

옥천변성대의 변성진화에 대한 논평

  • 조문섭;김현철
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.50-50
    • /
    • 2003
  • 옥천변성대의 변성진화사를 밝히기 위한 많은 연구의 결과, 중온-중압형의 최고변성조건(약 490-63$0^{\circ}C$, 4.2-9.4 kbar)과 함께 시계방향의 압력-온도-시간 경로가 알려졌다. 이는 드러스트 나페에 의해 옥천변성대의 지각 두께가 증가했으리라는 제안과 일치한다. 하지만 변성작용에 관련된 조산운동을 규명하는데는 여러 가지 어려움이 남아 있다. 특히 변성시기에 대한 논란은 오랫동안 거듭되어 왔으며, 최근의 연구 결과는 옥천변성대의 최고변성작용 시기를 석탄기와 페름기의 경계 부근인 약 300-280 Ma로 규정짓는다. 또한 소위 황강리층의 화강암질 역에서 구한 SHRIMP U-Pb 저어콘 연대도 오차범위가 크긴 하지만, 석탄기의 열 사건을 지지한다. 이상의 연구결과는 지체구조적으로 중요한 의미를 지니며, 특히 옥천변성대와 태백산분지가 서로 다른 진화 과정을 경험한 별개의 지구조구임을 시사한다. 두 지구조구의 봉합은 약 250-220 Ma 사이에 이루어졌으리라 추정되지만, 보다 자세한 해석을 위해서 신뢰할만한 연대 자료의 축적이 필요하다. 그럼에도 불구하고, 이러한 결과들은 옥천대의 진화과정에 대한 기존의 생각과 일부 배치되며, 새로운 지체구조적 파라다임을 요구한다.

  • PDF

Study on the Mineral Carbonation from Autoclaved Lightweight Concrete (ALC) (경량 기포콘크리트를 이용한 광물탄산화 연구)

  • Chae, Soo-Chun;Lee, Seung-Woo;Bang, Jun-Hwan;Song, Kyoung-Sun
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.439-450
    • /
    • 2020
  • Global warming caused by the emission of greenhouse gases into the atmosphere is being treated as a major problem for the human life, and mineral carbonation is drawing attention as one of many countermeasures against this situation. In this study, mineral carbonation experiments using autoclaved lightweight concrete (ALC) were performed under various conditions to determine its potential as a carbonation material. ALC can be regarded as a promising material for carbonation because it contains about 27 wt.% of CaO, a major component of mineral carbonation. The CaCO3 content produced as a result of the carbonation of ALC calculated on the assumption that all of the CaO content participates in mineral carbonation is about 40 wt.%. The optimum conditions for the mineral carbonation reaction from ALC are the solid-liquid ratio of 0.01 and the reaction time of 180 minutes when calcite is considered as a single product, or 0.06 and 180 minutes when mixture of calcite and vaterite can be considered. The coexistence of vaterite with calcite at solid-liquid ratio of 0.06 or higher was interpreted to be the case where vaterite formed in the later stage and did not change to calcite until the reaction was completed.

Major Industrial Minerals in Korea : Geological Occurrence and Current Status of Demand/Supply (국내 산업소재광물의 수급 및 부존 특성)

  • Lee, Dong-Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.1-13
    • /
    • 1994
  • The industrial minerals play an important role in mining sector. More than 70 % of total mineral production come from industrial mineral sector. This paper reviews geological occurrence of kaolin, pyrophyllite and limestone, and current demand-supply status of major industrial minerals in the Republic of Korea. The kaolin is mainly distributed in the Kyeongsang province, formed by deep weathering of Precambrian anorthosite on mountainside of gentle slope. The pyrophyllite mainly occurs in the Kyeongsang and Chulla provinces, formed by hydrothermal alteration of late Cretaceous andesitic and rhyolitic rocks. Pyrophyllite comprises massive and lenticular bodies and contains minor amounts of kaolin, alunite and pyrite, in some places andalusite and illite. The limestone(Great Limestone Series of Cambrian age) is distributed widely in the Kwangwon and Chungcheong provinces. The limestone bodies are approzimately 70 km long and 3 km wide, elongated NE-ward, and show high grade of CaO content. In 1992, the self-sufficiency ratio of 44 nonfuel (metallic and non-metallic) minerals was no more than 30 percent. However, the ratio of 27 industrial minerals (non-metallic) represents high value of about 72 percent. The export/productjon ratio of the industrial minerals shows decreasing patterns from 12.2 % in 1983 to 4.2 % in 1992. Also the import/production ratio shows rapidly decreasing pattern from 84 % in 1983 to 38.2 % in 1992.

  • PDF

홍성 토날라이트에서 관찰되는 화성기원의 엽리와 조직

  • 김장하;조문섭
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.52-52
    • /
    • 2003
  • 경기육괴 서남부에 위치한 홍성지역의 기반암은 선캠브리아 화강암질 편마암으로 이루어진 것으로 알려져 왔으나, 적어도 일부는 신원생대(약820 Ma) 시기에 관입한 토날라이트질 심성암체로 구성된다. 토날라이트의 주 구성광물은 석영, 사장석, 흑운모, 각섬석이며, 저어콘, 스핀, 녹니석, 인회석 등이 소량으로 산출한다. 이 연구에서는 야외 및 미세구조 관찰을 통해, 홍성 화강암질암에서 나타나는 구조적 요소들이 화성기원임을 보고한다. 홍성 토날라이트에서 관찰되는 구조들이 화성기원인 증거는: (1) 엽리가 연속성이 부족하고 주향과 경사가 불규칙하며, 드물게는 사층리처럼 보이기도 한다. (2) 자형 내지 반자형의 장석과 각섬석이 엽리면에 평행 또는 준평행하게 배열되어 있으며, 반정 주변에는 음영대(pressure shadow)가 발달하지 않는다 (3) 고철질 포획체(mafic enclave)는 주변암의 엽리에 평행하게 신장되어 있고, 완전히 고화 되지 않은 상태에서 형성되는 불꽃 구조(flame structure)가 드물게 관찰된다. (4) 고철질 포획체의 주 구성광물인 흑운모와 각섬석은 주변암의 엽리와 평행하게 배열되어 있으나, 소성변형의 증거를 보이지 않는다. 홍성 토날라이트에서 관찰되는 모든 조직들이 화성기원이라고 주장하기는 어렵지만, 모두 고체상태에서의 변형작용으로 설명하기는 더욱 힘들다. 후자가 화성기원의 조직에 어느 정도 영향을 주었는지는 추후의 연구를 통해 밝혀져야 할 것이다.

  • PDF

Geochemical Characteristics of Mineral Phases in the Mantle Xenoliths from Sunheul-ri, Jeju Island (제주도 선흘리 일대에 분포하는 맨틀포획암 내의 광물의 지화학적 특성 연구)

  • Kil, Young-Woo;Shin, Hong-Ja;Yun, Sung-Hyo;Koh, Jeong-Seon;Ahn, Ung-San
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.373-382
    • /
    • 2008
  • First reported geochemical characteristics of mantle xneoliths (spinel peridotites) from Sunheul-ri, Jeju Island, provide important clues for understanding the lithosphere composition, equilibrium temperature, and the period of entrainment and transport of the xenoliths in the host magma. Core and rim of mineral phases in the xenoliths are constant chemical compositions as $Fo_{89-90}$ of olivines. The ranges of equilibrium temperature, obtained by two pyroxenes geothermometer, are about $951{\sim}1035^{\circ}C$ for Sunheul-ri spinel peridotite xenoliths and are similar to the range of equilibrium temperatures for the xenoliths from other sites in Jeju island. The period of entrainment and transport of the xenoliths in the host magma of Sunheul-ri mantle xenoliths is about 42 days.

Variation of Water Content and Thermal Behavior of Talc Upon Grinding: Effect of Repeated Slip on Fault Weakening (활석 분쇄에 따른 함수율 및 열적거동 변화: 단층의 반복되는 미끌림이 단층 약화에 미치는 영향)

  • Kim, Min Sik;Kim, Jin Woo;Kang, Chang Du;So, Byung Dal;Kim, Hyun Na
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.201-211
    • /
    • 2019
  • The particle size and crystallinity of fault gouge generally decreases with slip. Phyllosilicates including talc are known to be present in fault gouge and play an important role in fault weakening. In particular, the coefficient of friction varies depending on the presence of a water molecule on the surface of mineral. The purpose of this study is to investigate the effect of talc on fault weakening by changing the water content and dehydration behavior of talc before and after grinding, which systematically varied particle size and crystallinity using high energy ball mill. Infrared spectroscopy and thermal analysis show that the as-received talc is hydrophobic before grinding and the water molecule is rarely present. After grinding up to 720 minutes, the particle size decreased to around 100 ~300 nm, and in talc, where amorphization proceeded, the water content increased by about 8 wt.% and water molecule would be attached on the surface of talc. As a result, the amount of vaporized water by heating increased after grinding. The dihydroxylation temperature also decreased by ${\sim}750^{\circ}C$ after 720 minutes of grinding at ${\sim}950^{\circ}C$ before grinding due to the decrease of particle size and crystallinity. These results indicate that the hydrophobicity of talc is changed to hydrophilic by grinding, and water molecules attached on the surface, which is thought to lower the coefficient of friction of phyllosilicates. The repeated slip throughout the seismic cycle would consistently lower the coefficient of friction of talc present in fault gouge, which could provide the clue to the weakening of matured fault.

Characteristics of adsorption-desorption of herbicide paraquat in soils (제초제 paraquat의 토양중 흡.탈착 특성)

  • Lee, Seog-June;Kim, Byung-Ha;Kim, Jang-Eok
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.1
    • /
    • pp.70-78
    • /
    • 1998
  • This study was conducted to investigate the adsorption-desorption characteristics of herbicide paraquat on clay minerals, humic materials, and soils under the laboratory conditions. Adsorption time of paraquat on clay minerals was faster than organic materials and soils. Adsorption amount on montmorillonite, 2:1 expanding-lattice clay mineral, was largest among the adsorbents tested. The adsorption capacity of paraquat was approximately 21 % of cation exchange capacity in soils, 45.1 % in kaolinite, and 80.6% in montmorillonite. Humic materials, humic acid and fulvic acid isolated from soil II, adsorbed larger amount of paraquat than kaolinite and soils. Distribution of tightly bound type of paraquat was larger in clay mineral and soils but loosely bound type was larger in humic acid and fulvic acid. In oxidized soil, the adsorption amount of paraquat was decreased to 85.1-95.5% of original soils. Distribution of unbound and loosely bound type of paraquat was decreased in oxidized soil but tightly bound type was increased. The competition cations decreased paraquat adsorption on humic materials and soils but not affected on montmorillonite. No difference was observed as the kinds of cations. In cation-saturated adsorbents, the adsorption amount was decreased largely in humic materials and soils but decreased a little in montmorillonite. The tightly bound type of paraquat in all adsorbents was not desorbed by pH variation, sonication, and cation application but loosely bound type was desorbed. However, the desorption amount was different as a kinds of adsorbents and desorption methods.

  • PDF

Characters of Fracture-filling Minerals in the KURT and Their Significance (한국원자력 연구원 지하처분연구시설(KURT)의 단열충전광물 특성과 그 의미)

  • Lee, Seung-Yeop;Baik, Min-Hoon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.165-173
    • /
    • 2007
  • The KAERI Underground Research Tunnel (KURT) located in KAERI (Korea Atomic Energy Research Institute) was recently constructed following the site investigation in 2003. Its dimension is 180 m in length, 6 m in width, and 6 m in height, and it has a horseshoe-like cross-sec-lion and is located in the ground to the depth of 90 m. When the tunnel was dug into the ground with 100 m in length, fresh rocks, weathered rocks and fracture-filling materials were taken and examined by mineralogical and chemical analyses. There are phyllosilicate minerals such as illite, smectite and chlorite including calcite, which are filling some faults and cracks of the KURT rock. The illite and smectite usually coexist in the fracture, where their content ratio is different according to which mineral is predominant. There are high concentrations of U and Th in the rocks coated with iron-oxides and filled with secondary materials as compared with those in the fresh rocks. It seems that the radionuclides, which are slowly leached from the parent rocks or exist as a dissolved form in the groundwater and hydrothermal solution, may have been migrated along the fractures and thereafter selectively sorbed and coprecipitated on the iron-oxides and the fracture-filling materials. These results will be very useful far the evaluation of environmental factors affecting the nuclides migration and retardation when long-term safety is considered to the geological disposal of high-level radioactive wastes in the future.

Burial Diagenesis of Smectite in the Tertiary Marine Basin, Japan (일본 제3기 해성 퇴적분지에서의 스멕타이트 매몰 속성작용)

  • Son, Byeong-Kook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.221-229
    • /
    • 2006
  • Mineralogical and chemical examinations were performed on interstratified illite-smectite (I-S) minerals that occur in the mudstones from a petroleum exploration well in the Tertiary marine basin, Japan. X-ray diffraction analysis shows that component layers of illite in the interstratified I-S increase with increasing burial depth while those of smectie decrease. In addition, the randomly (R=0) interstratified illite-smectite is changed into Rp1 ordered I-S at a depth of about 4,000 m, which corresponds to the result of organic analysis and indicates a burial temperature of about $100^{\circ}C$. However, the present geothermal gradient shows that the conversion of the random I-S to R=0 ordered I-S is likely to occur at 3,000 m. This discrepancy may be interpreted by the reverse fault at 2,500 m which resulted in a deeper burial of sediments up to 1,000 m. Chemical analysis also shows the compositional variation in I-S with increasing depth: a decrease in Si and an increases in Al and K, indicating that the substitution of Al for Si in tetrahedral sheets is compensated by the addition of K to interlayers. K may be derived from K-feldspar and micas, which is present in the mudstones.

Preliminary Study of Heavy Minerals in the Central Yellow Sea Mud (황해중앙이질대 퇴적물에 대한 중광물 예비 연구)

  • Lee, Bu Yeong;Cho, Hyen Goo;Kim, Soon-Oh;Yi, Hi Il
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • We studied the heavy minerals in 46 surface sediments collected from the Central Yellow Sea Mud (CYSM) to characterize the type, abundance, mineralogical properties and distribution pattern using the stereo-microscopy, field-Emission scanning electron microscopy (FE SEM) and chemical analysis through the energy dispersive spectrometer (EDS). Heavy mineral assemblages are primarily composed of epidote group, amphibole group, garnet group, zircon, rutile and sphene in descending order. Epidote group and amphibole group minerals account for more than 50% of total heavy minerals. The minerals in epidote group, amphibole group and garnet group in studied area are epidote, edenite and almandine, respectively. When we divided the CYSM into two regions by $124^{\circ}E$, the eastern region contain higher contents of epidote and (zircon + rutile), which are more resistant to weathering but lower of amphibole, which is less resistant to weathering than the western region. Based on this results, it is possible to estimate that the eastern region sediments are transported for a long distance while western region sediments are transported for a short distance from the source area. In the future, the additional study on the heavy minerals in river sediments flowing into the Yellow Sea and much more samples for marine sediments must be carried out to interpret exactly the provenance and sedimentation process.