• Title/Summary/Keyword: 야누스 자성입자

Search Result 2, Processing Time 0.015 seconds

Direct Simulation of the Magnetic Interaction of Elliptic Janus Particles Suspended in a Viscous Fluid (점성유체에 분산된 타원형 야누스 입자의 자성 상호작용에 관한 직접수치해석)

  • Kim, Hei Eun;Kang, Tae Gon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.7
    • /
    • pp.455-462
    • /
    • 2017
  • The magnetic interaction between elliptic Janus magnetic particles are investigated using a direct simulation method. Each particle is a one-to-one mixture of paramagnetic and nonmagnetic materials. The fluid is assumed to be incompressible Newtonian and nonmagnetic. A uniform magnetic field is applied externally in a horizontal direction. A finite-element-based fictitious domain method is employed to solve the magnetic particulate flow in the creeping flow regime. In the magnetic problem, the magnetic field in the entire domain, including the particles and the fluid, is obtained by solving the governing equation for the magnetic potential. Then, the magnetic forces acting on the particles are calculated via a Maxwell stress tensor formulation. In a single particle problem, it is found that the orientation angle at equilibrium is affected by the aspect ratio of the particle. As for the two-particle interaction, the dynamics and the final conformation of the particles are significantly influenced by the aspect ratio, the orientation, and the spatial positions of the particles. For the given positions of the particles, the fluid flow is also influenced by the orientation of each particle. The self-assembly structure of the particles is not a fixed one, but it varies with the above-mentioned factors.

Development of Prussian Blue-laden Magnetic Janus Micro-adsorbents for Remediation of Cs+ Ions in Wastewater (프러시안 블루가 함입된 자성 야누스 미세 흡착제 개발 및 이를 이용한 폐수 내 세슘정화)

  • Ju-Eon Jung;Dong-Hyeon Kyoung;Sung-Min Kang
    • Korean Chemical Engineering Research
    • /
    • v.62 no.2
    • /
    • pp.181-190
    • /
    • 2024
  • Here, we develop a centrifugal microfluidic reactor with simple, fast, and high-throughput manner for the generation of magnetic Janus micro-adsorbents (MAs). By using the multi-micronozzle consisting of two separate aligned needles and centrifugal tubes, we have synthesized highly monodispersed Prussian blue- and magnetic nanoparticle-laden micro-adsorbents (PB-MNP-MAs). The enhanced cesium (Cs+) adsorption was demonstrated by conducting the adsorption isotherm and kinetics experiment which can be contributed to the porous nature of the Ca-alginate networks with a high surface area of embedded PB nanoparticles, resulting to perform rapid adsorption activity within 10 min. After Cs+ adsorption process, the as-synthesized PB-MNP-MAs were successfully harvested by introducing the external magnetic fields. Therefore, we believe that our findings can be provided new direction towards the development of advanced functional adsorbents in biological and environmental fields.