• Title/Summary/Keyword: 액화수소

Search Result 165, Processing Time 0.03 seconds

Evaluation of Hydrogen Storage Performance of Nanotube Materials Using Molecular Dynamics (고체수소저장용 나노튜브 소재의 분자동역학 해석 기반 성능 평가)

  • Jinwoo Park;Hyungbum Park
    • Composites Research
    • /
    • v.37 no.1
    • /
    • pp.32-39
    • /
    • 2024
  • Solid-state hydrogen storage is gaining prominence as a crucial subject in advancing the hydrogen-based economy and innovating energy storage technology. This storage method shows superior characteristics in terms of safety, storage, and operational efficiency compared to existing methods such as compression and liquefied hydrogen storage. In this study, we aim to evaluate the solid hydrogen storage performance on the nanotube surface by various structural design factors. This is accomplished through molecular dynamics simulations (MD) with the aim of uncovering the underlying ism. The simulation incorporates diverse carbon nanotubes (CNTs) - encompassing various diameters, multi-walled structures (MWNT), single-walled structures (SWNT), and boron-nitrogen nanotubes (BNNT). Analyzing the storage and effective release of hydrogen under different conditions via the radial density function (RDF) revealed that a reduction in radius and the implementation of a double-wall configuration contribute to heightened solid hydrogen storage. While the hydrogen storage capacity of boron-nitrogen nanotubes falls short of that of carbon nanotubes, they notably surpass carbon nanotubes in terms of effective hydrogen storage capacity.

Thermal Analysis of a Cold Box for a Hydrogen Liquefaction Pilot Plant with 0.5 TPD Capacity (0.5 TPD 급 수소액화 파일럿 플랜트의 콜드박스 열해석)

  • KIM, HYOBONG;HONG, YONG-JU;YEOM, HANKIL;PARK, JIHO;KO, JUNSEOK;PARK, SEONG-JE;IN, SEHWAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.6
    • /
    • pp.571-577
    • /
    • 2020
  • Thermal analysis was performed for a cold box of a hydrogen liquefaction pilot plant with 0.5 ton/day capacity. The pilot plant has adopted a hydrogen liquefaction process using two-stage helium Brayton cycle with precooling of liquid nitrogen. The cold box for hydrogen liquefaction has generally vacuum insulation but inevitable heat invasion by conduction and radiation exists. The heat loads were calculated for cold box internals according to multilayer insulation emissivity. Total heat load of 181.7 W is estimated for emissivity of 0.03 considered in field condition.

A Study on the Thermal Characteristics of the Vacuum Jacket Valve for Transporting Liquefied Hydrogen According to the Degree of Vacuum (액화수소 수송용 진공자켓 밸브의 진공도에 따른 열적특성에 대한 연구)

  • OH, SEUNG JUN;JEON, KYUNG SOOK;YOON, JEONG HWAN;CHOI, JEONGJU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.585-591
    • /
    • 2021
  • Liquefied hydrogen have advantage which reduces the volume by about 800 times or more compared to hydrogen gas, so it is possible to increase the storage density. However, liquefied hydrogen produced by cryogenic cooling of 20 K or less at normal pressure has a problem of maximizing the insulation effect that blocks heat introduced from the outside. Representative insulation technologies include vacuum insulation and multi-layer insulation materials and in general, heat blocking is attempted by combining insulation technologies. Therefore, in this study, the pressure of the internal vacuum layer was changed to 10-1, 10-2, 10-3 and 10-4 Torr to confirm the thermal insulation performance of the vacuum jacket valve for transporting liquefied hydrogen. As a result, it was confirmed that the insulation performance improved as the degree of vacuum increased.

Disk Shape Design of Liquid Hydrogen Needle Valve with Various Inherent Flow Characteristics (다양한 고유유량 특성을 갖는 액체수소용 니들밸브의 디스크 형상 설계)

  • NAGYUMI HWANG;HYOLIM KANG;JUNGHO KANG;SEUNGHO HAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.4
    • /
    • pp.363-369
    • /
    • 2024
  • Needle valves are instrumentation devices with quick-opening inherent flow characteristics, used in pipelines requiring rapid flow supply immediately upon opening the flow path. For needle valves applied in liquefied hydrogen plants operating in cryogenic environments, it is necessary from the initial design stage to have various inherent flow characteristics in addition to quick-opening, depending on the intended usage. In this study, the inherent flow characteristics of a 1/2'' liquid hydrogen needle valve were evaluated through computational fluid dynamics analysis. Disk shapes exhibiting various inherent flow characteristics were proposed by deriving the flow coefficient (Cv) according to changes in disk shapes. Among the disk shapes that directly affect the Cv, the disk length and slope angle were selected, and case studies were conducted with nine parameter combinations. From the results of the normalized Cv regarding to opening rates, disk lengths and slope angles exhibiting quick-opening, equal-percentage, and linear inherent flow characteristics were determined.

Effects of Additives on Yield of Coal Liquefaction (석탄액화시 첨가제에 의한 수율 향상 효과)

  • 김종원;명광식;김연순;심규성;한상도
    • Journal of Energy Engineering
    • /
    • v.5 no.2
    • /
    • pp.176-182
    • /
    • 1996
  • The effects of some additives (black liquor, NaOH, water and wood) on the conversion of coal and product were investigated in the lab-scale, high pressure reacting system around 375$^{\circ}C$. The addition of black liquor enhances the coal conversion yield about 38.6%, which is mainly due to NaOH in black liquor. Also, sulfur of the black liquor in coal liquefaction process evolved hydrogen sulfide, which causes the odor problem. Addition of water in coal liquefaction increased CO$_2$content in the gas phase, and low boiling range components in liquid products. Coprocessing of wood and coal at 400$^{\circ}C$ increased yield of liquid product about 8%, but higher temperature above 400$^{\circ}C$ reduced liquid product due to increase of gas products.

  • PDF

Performance experiment of a hydrogen liquefaction equipment by direct cooling (직접냉각에 의한 수소액화장치의 성능실험)

  • Baik, J.H.;Kang, B.H.;Chang, H.M.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.3
    • /
    • pp.284-291
    • /
    • 1997
  • A hydrogen liquefaction equipment by direct cooling has been designed and built at KIST. Cool-down characteristics and liquefaction performance of the equipment have been investigated. The hydrogen liquefaction equipment consists of a GM refrigerator, a liquefaction velssel, a radiation shield and a cryostat. It is found that the hydrogen starts to be liquefied in the liquefaction vessel after 40~50 minutes of cool-down from the gas state of 270K. The effect of natural convection phenomena of charged gas in liquefaction vessel on the cool-down characteristics is evaluated by comparing with those in vacuum of liquefaction vessel. It is seen that the cool-down time of a liquefaction vessel is substantially increased in vacuum environment of liquefaction vessel. The experiments have been performed for 1~5 atm of hydrogen pressure to investigate the influence of hydrogen pressure on the liquefaction rate and figure of merit(FOM). It is found that both liquefaction rate and FOM are increased as the charged hydrogen pressure is increased.

  • PDF

Prediction of liquid amount in hydrogen liquefaction systems using GM refrigerator (GM냉동기를 이용한 수소액화 시스템의 액화량 예측)

  • 박대종;장호명;강병하
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.3
    • /
    • pp.349-358
    • /
    • 1999
  • Thermodynamic cycle analysis has been performed to maximize the liquid amount for various hydrogen liquefaction systems using GM(Gifford-McMahon) refrigerator. Since the present authors' previous experiments showed that the liquefaction rate was approximately 5.1mg/s in a direct contact with a commercial GM refrigerator, the purpose of this study is to predict how much the liquefaction rate can be increased in different configurations and with improved heat exchanger performance. The optimal operating conditions have been analytically sought with real properties of normal hydrogen for the single-stage GM precooled L-H(Linde-Hampson) system, the two-stage GM direct contact system, the two-stage GM precooled L-H system and the two-stage helium GM-JT (Joule-Thomson) system. The maximum liquefaction rate has been predicted to be only about 7 times greater than the previous experiment, when the two-stage precooling is employed and the effectiveness of heat exchangers approaches to 99.0%. It is concluded that the liquefaction rate is limited mainly by the cooling capacity of the current GM refrigerators and a larger scale of hydrogen liquefaction is possible with a greater capacity of cryocooler at 60-70 K range.

  • PDF

Process Analysis and Simulation for System of Air Liquefaction Separation Using LNG Cold Energy (LNG 냉열을 이용한 공기액화분리시스템의 시뮬레이션 및 공정 해석)

  • HAN, DANBEE;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.3
    • /
    • pp.276-281
    • /
    • 2019
  • The process of separating oxygen and nitrogen from the air is mainly performed by electric liquefaction, which consumes a lot of electricity, resulting in higher operating costs. On the other hand, when used for cold energy of LNG, electric power can be reduced compared to the electric Linde cycle. Currently, LNG cold energy is used in the cold refrigeration warehouse, separation of air-liquefaction, and LNG cold energy generation in Japan. In this study, the system using LNG cold energy and the Linde cycle process system were simulated by PRO/II simulators, respectively, to cool the elevated air temperature from the compressor to about $-183^{\circ}C$ in the air liquefaction separation process. The required amount of electricity was compared with the latent heat utilization fraction of LNG, the LNG supply pressure, and the LNG cold energy usage. At the air flow rate of $17,600m^3/h$, the power source unit of the Linde cycle system was $0.77kWh/m^3$, compared with $0.3kWh/m^3$.

A Study on the Utilization of the LNG Cold Heat for the Reduction of the Power Consumption in Main Air Compressors in Cryogenic Air Separation (심냉 공기분리공정의 공기압축공정에서 전력비 절감을 위한 액화천연가스 냉열 활용에 대한 연구)

  • CHO, DUHEE;CHO, JUNGHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.3
    • /
    • pp.322-327
    • /
    • 2020
  • In this work, a study for the reduction of the electric power consumption has been estimated in main air compressors in the air separation unit through cryogenic distillation columns with PRO/II with PROVISION V10.2 at AVEVA company. Both required LNG mass flow rate and cold heat contained in 1 ton of LNG were also predicted using Peng-Robinson equation of state with Twu's new alpha function. Through this work, we concluded that 32.33-48.69% of electric power could be saved by using LNG cold heat.