• Title/Summary/Keyword: 액화석유가스엔진

Search Result 44, Processing Time 0.022 seconds

Performance and Emission Characteristics of a Compression Ignition Engine Operated with LPG and Cetane Enhancing Additives (LPG/DTBP 혼합연료를 사용하는 압축착화 엔진의 부분부하 성능 및 배기특성에 관한 연구)

  • Lee, Seok-Hwan;Oh, Seung-Mook;Choi, Young;Kang, Kern-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.105-113
    • /
    • 2010
  • In this study, a feasibility test of liquid petroleum gas (LPG) compression ignition (CI) engine has been carried out to study the effectiveness of cetane enhancing additive: Di-tertiary-butyl peroxide (DTBP). Performance and emissions characteristics of a CI engine fuelled with DTBP blended LPG fuel were examined. Also, the effect of EGR (exhaust gas recirculation) on the combustion and emissions characteristics has been investigated. Results showed that stable engine operation over a wide range of the engine loads was possible. Exhaust emissions measurements showed that hydrocarbon were decreased with the blended fuel at enhancing cetane number. Furthermore, the combustion stability of LPG with a cetane number improver was equivalent to that of commercial Diesel fuel. Increasing the EGR rate leads to deteriorate the IMEP (indicated mean effective pressure) and increase the ignition delay. It was found that the exhaust emissions with the EGR resulted in a very large reduction in nitrogen oxides at the expense of higher THC and CO emissions. Considering the results of engine performance and exhaust emissions, LPG blended fuel of enhancing cetane number could be used as an alternative fuel for diesel in a CI engine.

Knock Characteristic Analysis of Gasoline and LPG Homogeneous Charge Compression Ignition Engine (가솔린과 LPG 예혼합 압축 착화 엔진의 노킹 특성)

  • Yeom, Ki-Tae;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.54-62
    • /
    • 2007
  • The knock characteristics in an engine were investigated under homogeneous charge compression ignition (HCCI) operation. Liquefied petroleum gas (LPG)and gasoline were used as fuels and injected at the intake port using port fuel injection equipment. Di-methyl ether (DME) was used as an ignition promoter and was injected directly into the cylinder near compression top dead center (TDC). A commercial variable valve timing device was used to control the volumetric efficiency and the amount of internal residual gas. Different intake valve timingsand fuel injection amounts were tested to verify the knock characteristics of the HCCI engine. The ringing intensity (RI) was used to define the intensity of knock according to the operating conditions. The RI of the LPG HCCI engine was lower than that of the gasoline HCCI engine at every experimental condition. The indicated mean effective pressure (IMEP) dropped when the RI was over 0.5 MW/m2and the maximum combustion pressure was over 6.5MPa. There was no significant relationship between RI and fuel type. The RI can be predicted by the crank angle degree (CAD) at 50 CA. Carbon monoxide (CO) and hydrocarbon (HC) emissions were minimized at high RI conditions. The shortest burn duration under low RI was effective in achieving low HC and CO emissions.

A Study of Downsizing Effect on Turbocharged LPG Direct Injection(T-LPDI) Engine with Startability Improvement by Optimization of Fuel Control System (LPG 직분사 엔진의 다운사이징 효과 및 시동성 개선을 위한 연료 제어시스템 최적화에 관한 연구)

  • Lim, Jongsuk;Kim, Dowan;Park, Hanyong;Song, Jinoh;Han, Junghwan;Yook, Chulsoo;Park, Seongmin;Shin, Yongnam
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.619-626
    • /
    • 2016
  • The new 1.4 L turbocharged LPG direct injection (T-LPDI) engine is presented in this paper to improve the fuel efficiency of the vehicles installed with the 2.0 L LPG port fuel injection (LPI) engine, while maintaining the performance as a downsizing concept for the new engine platform development. Firstly, the return type high pressure LPG fuel supply system is designed and mounted in the new 1.4 L T-LPDI engine. As a result, this new engine shows a much better WOT performance and approximately 8 % of improved fuel economy level, as compared to the 2.0 L LPI vehicle. Secondly, the LPDI engine specific optimized design for high pressure fuel components and fuel injection control strategies are proposed and evaluated in order to overcome the restartability problem in a heat-soaked condition called the vapor lock phenomenon. Consequently, these experimental results illustrate a great potential for the developed 1.4 L T-LPDI engine as a possible substitute for the 2.0 L LPI engine.

Effect of Varying Excessive Air Ratios on Nitrogen Oxides and Fuel Consumption Rate during Warm-up in a 2-L Hydrogen Direct Injection Spark Ignition Engine (2 L급 수소 직접분사 전기점화 엔진의 워밍업 시 공기과잉률에 따른 질소산화물 배출 및 연료 소모율에 대한 실험적 분석)

  • Jun Ha;Yongrae Kim;Cheolwoong Park;Young Choi;Jeongwoo Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.52-58
    • /
    • 2023
  • With the increasing awareness of the importance of carbon neutrality in response to global climate change, the utilization of hydrogen as a carbon-free fuel source is also growing. Hydrogen is commonly used in fuel cells (FC), but it can also be utilized in internal combustion engines (ICE) that are based on combustion. Particularly, ICEs that already have established infrastructure for production and supply can greatly contribute to the expansion of hydrogen energy utilization when it becomes difficult to rely solely on fuel cells or expand their infrastructure. However, a disadvantage of utilizing hydrogen through combustion is the potential generation of nitrogen oxides (NOx), which are harmful emissions formed when nitrogen in the air reacts with oxygen at high temperatures. In particular, for the EURO-7 exhaust regulation, which includes cold start operation, efforts to reduce exhaust emissions during the warm-up process are required. Therefore, in this study, the characteristics of nitrogen oxides and fuel consumption were investigated during the warm-up process of cooling water from room temperature to 88℃ using a 2-liter direct injection spark ignition (SI) engine fueled with hydrogen. One advantage of hydrogen, compared to conventional fuels like gasoline, natural gas, and liquefied petroleum gas (LPG), is its wide flammable range, which allows for sparser control of the excessive air ratio. In this study, the excessive air ratio was varied as 1.6/1.8/2.0 during the warm-up process, and the results were analyzed. The experimental results show that as the excessive air ratio becomes sparser during warm-up, the emission of nitrogen oxides per unit time decreases, and the thermal efficiency relatively increases. However, as the time required to reach the final temperature becomes longer, the cumulative emissions and fuel consumption may worsen.