• 제목/요약/키워드: 액체 질량 분율

검색결과 6건 처리시간 0.019초

FDS 모델을 이용한 메탄올 풀 화재의 질량연소플럭스 예측 (Predicting the Mass Burning Flux of Methanol Pool Fires by Using FDS Model)

  • 김성찬
    • 한국화재소방학회논문지
    • /
    • 제31권5호
    • /
    • pp.12-18
    • /
    • 2017
  • 본 연구는 FDS의 액체증발모델을 이용하여 메탄올 풀 화재의 질량연소플럭스를 예측하고 복사분율, 평균흡수계수와 같은 연료의 열적 물성값에 따른 영향을 평가하였다. 해석대상 풀의 직경은 5 cm에서 200 cm 사이이며 해석영역의 크기는 풀의 크기에 비례하여 구성하였다. 해석에 적용된 기준격자는 격자민감도 평가를 통해 결정되었으며 약 750,000개의 격자를 적용하였다. 메탄올 풀 화재에 대해 FDS 액체증발모델을 적용하여 계산된 질량연소플럭스는 해석대상 풀 직경에 따른 천이특성을 잘 나타냈으며 전체적으로 실험편차 내에서 기존 실험과 일치된 결과를 예측하였다. 질량연소플럭스는 복사분율 증가에 따라 증가하는 경향을 보였으며 풀의 직경이 작은 경우 평균흡수계수의 영향이 상대적으로 크게 나타났다.

극저온 추진제 고밀도화 기술동향 및 적용방안 (Review of Cryogenic Propellant Densification Technology)

  • 조남경;한상엽;김영목;정상권
    • 한국추진공학회지
    • /
    • 제9권3호
    • /
    • pp.133-144
    • /
    • 2005
  • 기존 발사체 시스템의 성능을 향상시키는 방법의 하나로 액체산소와 액체수소와 같은 극저온 추진제를 고밀도화하는 기술이 최근 활발히 개발되고 있다. 극저온 추진제 고밀도화를 통하여 발사체에서 추진제의 질량분율을 높임으로 보다 큰 유상하중을 괘도에 진입시킬 수 있다. 본 논문에서는 극저온 추진제 고밀도화의 원리 및 최근 기술동향을 소개한다. 주로 액체산소의 고밀도화에 초점을 맞추어 여러 고밀도화 방법들에 대해서 소개하였다. 고밀도화된 극저온 추진제를 탑재한 발사체의 엔진 및 발사체 전체 성능해석 결과를 통하여, 발사체 시스템의 성능 향상을 정량적으로 소개하였다 또한 향후 극저온 추진제 고밀도화 기술의 국내 위성발사체 적용을 위한 방안을 간략히 제시하였다.

케로신 동축 와류형 분사기의 정상 및 비정상 상태 화염구조 해석 (The steady and unsteady state computations on the flame structure for a Kerosene coaxial swirl injector)

  • 한상훈;김성구;김종규;최환석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2012년도 제38회 춘계학술대회논문집
    • /
    • pp.31-34
    • /
    • 2012
  • 케로신을 연료로 하는 동축 스월 분사기에 대해 정상 상태 및 비정상 상태의 연소 해석을 수행하였다. 난류연소 모델로 화학평형 상태로 가정하는 Non-premixed equilibrium 모델을 이용하였고, 고압의 조건에서 실제유체의 거동을 다룰 수 있도록 상태방정식으로 SRK(Soave-Redlich-Kwong) 상태방정식을 적용하였다. 해석을 통해 온도분포, OH 질량분율 등 정상 상태의 계산 결과와 시간 평균된 비정상 상태의 계산 결과를 비교하였고, 이들 간의 화염 구조가 서로 상이함을 확인할 수 있었다.

  • PDF

Vortex Hybrid 로켓 난류연소과정의 모델링 해석 (Numerical Modeling for Turbulent Combustion Processes of Vortex Hybrid Rocket)

  • 조웅호;김후중;김용모;윤명원
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제20회 춘계학술대회 논문집
    • /
    • pp.244-245
    • /
    • 2003
  • 고체나 액체 추진로켓에 비하여 하이브리드 추진 시스템은 작동조건의 안정성과 안전함등의 많은 장점을 가지고 있다. HTPB와 같은 고체연료는 제작 및 저장, 운송 그리고 장착상의 안정성을 가지고 있으며 하이브리드 로켓의 고체연료로의 산화제의 유입을 제어하면서 추력의 변화와 엔진내부의 연소중단과 재 점화를 용이하게 할 수 있다. 이러한 이유로 인하여 하이브리드 엔진은 좀 더 경제적인 장치로 기대를 모으고 있다. 그러나, 기존의 하이브리드 로켓 엔진은 고체 추진 로켓에 비하여 낮은 연료 regression 율과 연소효율을 가지는 단점이 있다. 이러한 단점을 해결하고 요구되어지는 추력값과 연료유량을 증가시키기 위하여 고체연료의 표면적을 증가시킬 필요가 있다. 기존의 하이브리드 엔진에서는 연료 그레인에 다수의 연소포트를 만들어 표면적을 증가시켰으나 이는 비 활용 공간의 증가와 추진제의 질량 및 체적분율의 상당한 감소를 초래한다. 지난 수십년간에 걸쳐 하이브리드 엔진에서 연료의 regression 특성 및 엔진 성능 향상을 위한 연구가 계속되어 왔으며 최근에 엔진의 체적 규제를 경감시키고 연료의 regression율을 향상시키기 위하여 선회유동을 이용하는 하이브리드 로켓 엔진들이 제안되고 있다. 이러한 선회유동을 가지는 하이브리드 로켓은 고체연료 그레인에 대하여 평행하게 유입되는 기존의 하이브리드 로켓에 비하여 고체연료 벽면에서의 대류열전달이 현저하게 증가하게 되어 아주 높은 고체연료의 regression율을 얻을 수 있는 이점이 있다. 선회유동 하이브리드 로켓의 연소과정은 고체 연료의 열분해과정, 대류 열전달, 난류 혼합, 난류와 화학반응의 상호작용, soot의 생성 및 산화과정, soot 입자 및 연소가스에 의한 복사 열전달, 연소장과 음향장의 상호작용 등의 복잡한 물리적 과정을 포함하고 있다. 이러한 물리적 과정 중 난류연소, 고체연료 벽면 근방에서의 대류 열전달 및 연소과정에서 생성되는 soot 입자로부터의 복사 열전달, 그리고 고체연료 열 분해시 표면반응들은 고체연료의 regression율에 큰 영향을 미친다. 특히 고체연료의 난류화염면의 위치와 폭, 그리고 비 예혼합 난류화염장에서 생성되는 soot의 체적분율의 예측은 난류연소모델, 열전달 모델, 그리고 regression율 모델에 의해 크게 영향을 받기 때문에 수치모델의 예측 능력 향상시키기 위하여 이러한 물리적 과정을 정확히 모델링해야 할 필요가 있다. 특히 vortex hybrid rocket내의 난류연소과정은 아래와 같은 Laminar Flamelet Model에 의해 모델링 하였다. 상세 화학반응 과정을 고려한 혼합분율 공간에서의 화염편의 화학종 및 에너지 보존 방정식은 다음과 같다. 화염편 방정식과 혼합분률과 scalar dissipation rate의 관계식을 이용하여 혼합분률과 scalar dissipation rate에 따른 모든 reactive scalar들을 구하게 된다. 이러한 화염편 방정식들을 mixture fraction space에서 이산화시켜서 얻은 비선형 대수방정식은 TWOPNT(Grcar, 1992)로 계산돼 flamelet Library에 저장되게 된다. 저장된 laminar flamelet library를 이용하여 난류화염장의 열역학 상태량 평균치는 presumed PDF approach에 의해 구해진다. 본 연구에서는 강한 선회유동을 가지는 Hybrid Rocket 연소장내의 난류와 화학반응의 상호작용을 분석하기 위하여 Laminar Flamelet Model, 화학평형모델, 그리고 Eddy Dissipation Model을 이용한 수치해석결과를 체계적으로 비교하였다. 또한 Laminar Flamelet Model과 state-of-art 물리모델들을 이용하여 선회 유동을 갖는 하이브리드 로켓 엔진의 연소 및 Soot 생성 및 산화과정을 살펴보았으며 복사 열전달이 고체 연료 표면의 regression율에 미치는 영향도 살펴보았다. 특히 swirl강도, 산화제의 유입위치 그리고 선회유동의 형성방식이 하이브리드 로켓의 연소특성 및 regression rate에 미치는 영향을 상세히 해석하였다.

  • PDF

스월형 분사기 분무 예측 모델에서의 격자 의존성 연구 (Study of Grid Dependency of Sheet Atomization Model of a Pressure-Swirl Atomizer)

  • 문윤완;설우석;윤영빈
    • 대한기계학회논문집B
    • /
    • 제34권9호
    • /
    • pp.817-824
    • /
    • 2010
  • 본 연구에서는 개선된 액막 분열 모델을 개발하였고 그에 따른 계산격자 의존성을 고찰하였다. 액막 및 액적 추적을 위해 라그랑지-오일러 액적 추적 모델을 사용하였기 때문에 계산격자의 크기에 한계가 있으므로 매우 작은 격자를 사용하는데 제약을 받는다. 또한 유동장내로의 분사기의 액막 주입 시선회유동이 존재하므로 선회 유동을 정확히 예측하기 위해서는 계산격자가 충분히 작아야 한다. 이러한 상반된 조건으로부터 두 목적을 달성하기 위해 10$\times$10mm부터 0.625$\times$0.625mm까지 다양한 계산격자를 구성하여 수치적 고찰을 수행하였고 가장 효율적인 격자의 크기는 1.25$\times$1.25mm인 것을 알 수 있었다.

층류 대향류장에 형성된 분무화염의 2차원 비정상 모델링 -당량비 및 연료종에 관한 영향- (2-Dimensional Unsteady Modeling of Spray Flame Formed in a Laminar Counterflow Field - Effects of Equivalence Ratio and Fuel -)

  • 황승민;정진도;서병민;김영우
    • 대한환경공학회지
    • /
    • 제31권10호
    • /
    • pp.933-940
    • /
    • 2009
  • 본 연구에서는 분무화염의 기초적인 물리현상을 해명하기 위하여 층류 대향류장에 형성된 분무 화염에 2차원 직접 수치계산(Direct numerical simulation, DNS)을 적용하여, 당량비 및 연료종이 분무화염 구조에 미치는 영향에 대하여 관찰하였다. 기상에 대해서는 질량 보존식, 운동량 보존식, 에너지 보존식을 오일리안(Eulerian) 법으로 계산하였으며, 액적에 대해서는 화염중의 모든 개개의 유적을 라그란지안(Lagrangian) 법으로 추적하였다. 액체 연료로는 n-데칸 ($C_{10}H_{22}$)과 n-헵탄($C_7H_{16}$)을 이용하였으며, 연소반응 모델에는 총괄반응식을 이용하였다. 당량비가 증가함에 따라 착화가 빠르며, 고온영역도 넓게 분포하고 있다. 그러나, 최대 온도치는 당량비가 증가함에 따라 한번 증가한 후 감소하는 경향을 나타내고 있다. 당량비가 클수록 최대 온도가 감소하는 것은 분무화염 내부의 군연소 거동에 의한 냉각효과 때문이라고 생각된다. 또한, n-헵탄은 n-데칸과 비교하여 증발속도가 빠르기 때문에 넓은 고온 영역을 형성하지만 최대 온도는 거의 같은 값을 나타내었다.