• Title/Summary/Keyword: 액체 온도장

Search Result 54, Processing Time 0.019 seconds

Fluid Inclusion Studies on the Wolak Tungsten-Molybdenum Deposits, Korea (월악 중석-몰리브덴 광상의 유체포유물 연구)

  • Lee, In Sung;Park, Hee-In
    • Economic and Environmental Geology
    • /
    • v.15 no.1
    • /
    • pp.17-32
    • /
    • 1982
  • The Wolak tungsten-molybdenum deposits are tungsten-molybdenum bearing quartz veins which filled the fractures in Pre-Cambrian pebble-bearing calcareous hornfels, hornfels and Cretaceous granite. There are two vein groups in this mine, Dongsan vein group in the west and Kwangcheon vein group in the east. The ore minerals are wolframite, scheelite, molybdenite, native bismuth, bismuthinite, pyrite, arsenopyrite, chalcopyrite, cubanite, stannite, pyrrhotite, sphalerite, galena, marcasite, Pb-Bi sulfosalt and ilmenite. Quartz, calcite, beryl, fluorite, muscovite, rhodochrosite and siderite are gangue minerals. Fluid inclusion studies were carried out for the quartz, beryl, scheelite, early and late fluorite. Fluid inclusion studies reveal that liquid-gas inclusions are most common and occur in all of the minerals examined. Filling degree of the inclusions in the late fluorite is much higher than that of the inclusions in quartz and early fluorite. Liquid $CO_2$ bearing liquid-gas inclusions occur in quartz and early fluorite. Liquid, gas and solid phase inclusions occur in quartz, beryl and scheelite. Salinities of inclusions in quartz and beryl from Dongsan vein group range from 3.9 to 8.0, from 5.3 to 7.7 wt.% NaCl equivalent respectively. Salinities in the late fluorite range from 1.5 to 3.2 wt.% NaCl equivalent. In Kwangcheon vein group salinities range from 3.9 to 9.6 wt.% NaCl equivalent in quartz, from 2.8 to 7.3 wt.% NaCl equivalent in early fluorite, from 1.3 to 1.5 wt.% NaCl equivalent in late fluorite. Homogenization temperatures of inclusions range from $239^{\circ}$ to higher than $360^{\circ}C$ in quartz, over $360^{\circ}C$ in scheelite, from $288^{\circ}C$ to higher than $360^{\circ}C$ in beryl, and from $159^{\circ}$ to $202^{\circ}C$ in late fluorite of the Dongsan vein group. In Kwangcheon vein group, homo genization temperatures of inclusions range from $240^{\circ}C$ to higher than $360^{\circ}C$ in quartz and from $240^{\circ}$ to $328^{\circ}C$ in early fluorite. As a whole, in Dongsan and Kwangcheon vein groups it seems that there are no distinct differences in mineralogy, salinities and homogenization temperatures. No distinct variations in homogenization temperatures are revealed through about 300 m vertically in both district. The faint trend of increase in salinities in the lower level can be detected. The salinity, $CO_2$ content and the temperature of ore fluid were much higher in the early vein stage and then dropped off in the late stage of mineralization as represented by the quartz and fluorite inclusion data.

  • PDF

Experimental Investigation of the Combined Effects of Heat Exchanger Geometries on Nucleate Pool Boiling Heat Transfer in a Scaled IRWST (열교환기 형상이 축소한 IRWST 내부의 풀핵비등에 미치는 복합적인 영향에 대한 실험적 연구)

  • Kang, Myeong-Gie;Chun, Moon-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.1-16
    • /
    • 1996
  • In an effort to determine the combined effects of major parameters of heat exchanger tubes on the nucleate pool boiling heat transfer in the scaled in-containment refueling water storage tank (IRWST), a total of 1,966 data for q'quot; versus ${\Delta}T$ has been obtained using various combinations of tube diameters, surface roughness, and tube orientations. The experimental results show that (1) increased surface roughness enhances heat transfer for both horizontal and vertical tubes, (2) the two heat transfer mechanisms, i.e.,enhanced heat transfer for both horizontal and vertical tubes, (2) the two heat transfer mechanisms, i.e., enhanced heat transfer due to liquid agitation by bubbles generated and reduced heat transfer by the formation of large vapor slugs and bubble coalescence are different in two regions of low heat fluxes (q'quot; $\leq$50kW/$m^2)$ and high heat fluxes (q'quot; $\geq$50kW/$m^2)$ depending on the orientation of tubes and the degree of surface roughness, and (3) the heat transfer rate decreases as the tube diameter is increased for both horizontal and vertical tubes, but the effect of tube diameter on the nucleate pool boiling heat transfer for vertical tubes is greater than that for horizontal tubes. Two empirical heat transfer correlations for q'quot;, one for horizontal tubes and the other for vertical tubes, are obtained in terms of surface roughness $({\varepsilon})$ and tube diameter (D). In addition, a simple empirical correlation for nucleate pool boiling heat transfer coefficient $(h_b)$ is obtained as a function of heat flux (q'quot;) only.ucleate pool boiling heat transfer coefficient $(h_b)$ is obtained as a function of heat flux (q'quot;) only.

  • PDF

Development of Efficient Screening Methods for Melon Plants Resistant to Fusarium oxysporum f. sp. melonis (멜론 덩굴쪼김병에 대한 효율적인 저항성 검정법 개발)

  • Lee, Won Jeong;Lee, Ji Hyun;Jang, Kyoung Soo;Choi, Yong Ho;Kim, Heung Tae;Choi, Gyung Ja
    • Horticultural Science & Technology
    • /
    • v.33 no.1
    • /
    • pp.70-82
    • /
    • 2015
  • This study was conducted to establish an efficient screening system to identify melon resistant to Fusarium oxysporum f. sp. melonis. F. oyxsporum f. sp. melonis GR was isolated from infected melon plants collected at Goryeong and identified as F. oxysporum f. sp. melonis based on morphological characteristics, molecular analyses, and host-specificity tests on cucurbits including melon, oriental melon, cucumber, and watermelon. In addition, the GR isolate was determined as race 1 based on resistance responses of melon differentials to the fungus. To select optimized medium for mass production of inoculum of F. oxysporum f. sp. melonis GR, six media were tested. The fungus produced the most spores (microconidia) in V8-juice broth. Resistance degrees to the GR isolate of 22 commercial melon cultivars and 6 rootstocks for melon plants were investigated. All tested rootstocks showed no symptoms of Fusarium wilt. Among the tested melon cultivars, only three cultivars were susceptible and the other cultivars displayed moderate to high resistance to the GR isolate. For further study, six melon cultivars (Redqueen, Summercool, Superseji, Asiapapaya, Eolukpapaya, and Asiahwanggeum) showing different degrees of resistance to the fungus were selected. The development of Fusarium wilt on the cultivars was tested according to several conditions such as plant growth stage, root wounding, dipping period of roots in spore suspension, inoculum concentration, and incubation temperature to develop the disease. On the basis of the test results, we suggest that an efficient screening method for melon plants resistant to F. oxysporum f. sp. melonis is to remove soil from roots of seven-day-old melon seedlings, to dip the seedlings without cutting in s pore s uspension of $3{\times}10^5conidia/mL$ for 30 min, to transplant the inoculated seedlings to plastic pots with horticulture nursery media, and then to cultivate the plants in a growth room at 25 to $28^{\circ}C$ for about 3 weeks with 12-hour light per day.

The Effect of Seminal Plasma on Chilling and Freezing of Canine Spermatozoa (개 정액의 정장이 개정자의 냉각과 동결에 미치는 영향)

  • You, Myung-Jo;Lee, John-Hwa;Kim, In-Shik;Park, Jin-Ho;Kwon, Jung-Kee;Kim, Jong-Hoon;Kim, Bum-Seok;Yu, Il-Jeoung
    • Journal of Veterinary Clinics
    • /
    • v.24 no.4
    • /
    • pp.486-492
    • /
    • 2007
  • Seminal plasma(SP) is usually removed from semen that is to be cryopreserved. However, some reports indicate that SP has beneficial effects on spermatozoa during chilling and freezing. The purpose of this study was to determine the effect of SP on sperm survival by adding SP to the extender before cooling and freezing canine spermatozoa. In replicate experiments, ejaculates obtained from four healthy dogs(1-4 years old) of various breeds were pooled, centrifuged at $300{\times}g$ for 10 min at $25^{\circ}C$, and the supernatant of seminal plasma was decanted. Spermatozoa were suspended in egg yolk-Tris(EYT) buffer. The study comprised two experiments: [Exp 1] Sperm were suspended in EYT extender containing either 0, 20, 40, 80 or 100% SP and were slowly cooled to $4^{\circ}C$ for 2h or held at $25^{\circ}C$ as controls. Sperm concentration was adjusted to $2{\times}10^8/ml$. [Exp II] Sperm samples, each of which contained $1{\times}10^8/ml$, were assigned to nine groups to be frozen. In the first four groups, sperm in EYT containing either 20, 40, 80 or 100% SP were cooled to $4^{\circ}C$, then diluted to contain final concentrations of EYT+0.6M glycerol and then were frozen. The final concentrations of SP were 10, 20, 40 or 50%. In the other four groups, sperm in EYT alone were first cooled slowly to $4^{\circ}C$, then diluted to contain final concentrations of EYT+0.6M glycerol plus 10, 20, 40 or 50% SP and then were frozen. Spermatozoa, which chilled in EYT alone and diluted to contain final concentrations of EYT+0.6M glycerol without seminal plasma, and then frozen, was regarded as control. Spermatozoa were frozen at $25^{\circ}C/min$ of cooling rate in plastic straws that were suspended above liquid nitrogen and thawed in water at $38^{\circ}C$ for 1 min. Sperm survival was assayed by determining progressive motility and integrity of plasma and acrosome membranes. Progressive motility was determined by microscopic examination at $200{\times}$ magnification. Membrane integrity was assessed by use of a double fluorescent dye, and acrosome integrity by staining sperm with Pisum sativum agglutinin. The results of the first experiment showed that adding SP did not improve motility of spermatozoa compared to those incubated without SP regardless of temperature. The results of the second experiment showed that spermatozoa suspended in EYT+0.6M glycerol containing SP exhibited the higher progressive motility before being frozen(P<0.05). However, frozen-thawed spermatozoa that had suspended in EYT+0.6M glycerol containing SP showed the similar or lower viability(P<0.05). In summary, although seminal plasma did not affect spermatozoa that were chilled in EYT without cryoprotectant(CPA), addition of seminal plasma to EYT containing CPA did significantly improved progressive motility of canine spermatozoa that were chilled.