• Title/Summary/Keyword: 액체 과냉도

Search Result 12, Processing Time 0.024 seconds

Heat Transfer Enhancement from Plain and Micro Finned Surfaces According to Liquid Subcooling (작동유체의 과냉도에 따른 매끈한 표면과 마이크로 핀 표면에서의 열전달 촉진에 관한 연구)

  • Lim, Tae-Woo;You, Sam-Sang;Choi, Hyeung-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1137-1143
    • /
    • 2009
  • Experiments were conducted to evaluate pool boiling heat transfer performance between plain and micro finned surfaces with FC-72, which is chemically and electrically stable. Three kinds of micro fins with the dimension of $100{\mu}m\;{\times}\;10{\mu}m$, $150{\mu}m\;{\times}\;10{\mu}m$ and $200{\mu}m\;{\times}\;10{\mu}m$ (width $\times$ height) were fabricated on the surface of a silicon chip. The experiments were carried out on the liquid subcooling of 5, 10 and 15 K under the atmospheric condition. The micro finned surface with a larger fin width of $200{\mu}m$ provided a better pool boiling heat transfer performance. Also, the micro finned surfaces showed a sharp increase in heat flux with increasing wall superheat and a larger heat transfer enhancement compared to a plain surface.

Forced Convection Condensation of Vapor on A Cold Water (강제 대류에서 수증기의 찬물 표면에서의 응축)

  • Park, Jae-Koel;Lee, Sung-Hong
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.13 no.3
    • /
    • pp.141-147
    • /
    • 1984
  • 2차원 채널 입구에서의 꿰떼 난류 유동하는 찬 물 위를, 같은 방향으로 빠르게 난류 유동하는 수증기의 응축은 액체필름 초기상태의 과냉 정도에 의하여서 응축능력이 정하여진다. 수증기와 액체의 채널 입구에서의 균일한 속도 및 온도, 그리고 채널 입구에서 액체와 증기가 차지하는 체적비, 즉 액체필름과 채널 높이를 알고 있을 때, 하류로 유동하면서 응축이 일어나는 현상을 예측하는 모델을 제안하고, 실험치와 비교한 것이다. 채널 입구에서 윗쪽으로는 더운 기체, 아래쪽으로는 찬 액체가 평행한 방향으로 유동하면서 접촉하고 평균적인 액체필름의 두께와 단열된 채널 벽체를 가정하여서, 기본방정식으로 연속방정식, 운동방정식을 세우고. 에너지와 운동량 전달 메카니즘 사이에 유사성이 존재한다고 가정하였으며, 전단응력의 크기는 필자의 모델을 적용하였다. 기본방정식을 기체 속도, 액체 속도, 필름의 두께, 압력에 대해서 수치해를 구하여서 동일조건 하에서 실험한 데이터와 비교하였다. 수증기와 액체 경계면에서의 전단응력은 매우 좋은 일치를 보여주고 있다.

  • PDF

An Experimental Study on the Flow Characteristics Inside an Open Two-Phase Natural Circulation Loop (개방된 2상 자연순환 회로내의 유동특성에 관한 실험적 연구)

  • 경익수;이상용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1313-1320
    • /
    • 1993
  • Flow patterns inside the riser section and the effects of the heater inlet-and exit-restrictions, liquid charging level and the heater inlet subcooling on the flow characteristics inside an open two-phase natural circulation loop were studied experimentally. Three basic circulation modes were observed ; periodic circulation (A)(flow oscillations with incubation(no boiling) period), continuous circulations(stable operation mode with no flow oscillations), and periodic circulation (B) (flow oscillations with continuous boiling). The circulation rate increases and then decreases with the increase of the heating rate and the maximum circulation rate appears with the continuous circulation mode. The decrease of the inlet-restriction or the increase of the exitrestriction destabilizes the system. When the liquid charging level or the inlet subcooling decreases, the continuous circulation mode starts at the lower heating rate and the system is stabilized.

SOLIDIFICATION OF AQUEOUS BINARY SOLUTIONS SA TURA TED PACKED BED FROM ABOVE (다공성물질이 충전된 수용성 혼합용액의 동결거동에 관한 실험 연구)

  • 최주열;김병철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.42-50
    • /
    • 1992
  • 다공성 물질이 충전된 밀폐용기 내에서 수용성 이원혼합용액($H_2O{+}NaCl$)이 수평한 상부전열면으로 부터 동결될 때 혼합용액의 초기농도, 액체의 과열 및 다공성물질의 입자직경 크기가 온도와 농도분포에 미치는 영향을 실험하였으며, 동결이 진행됨에 따라 이동하는 고액상 혼합영역의 계명위치를 측정하였다. 다공성물질은 평균직경이 2.85mm, 6mm인 구형의 유리구슬을 이용하였다. 수용성 혼합용액의 초기농도는 공융농도도 이하로 하였으며 상부 전열면은 공융온도 이하로, 하부전열면은 액상선온도 이상으로 유지하여 동결 실험한 결과 상부 전열면으로 부터 고체 영역, 고액상혼합영역, 액체영역으로 구분되었다. 액체의 초기농도가 5%인 경우 과냉현상이 관찰되었으나 10%, 15%인 경우 액체온도는 액상선 온도보다 더 높았다. 용액의 초기농도를 감소시킬수록 고체와 고액상혼합영역의 범위는 증대되었으며 고액상혼합영역과 고체영역의 계면은 더욱 강해진 자연대류에 의하여 2차원성이 증가된 형상을 보였다. 용액의 자연대류는 다공성물질의 직경이 클수록 증가되었으며 계면에서의 제융해현상은 관찰되지 않았다.

  • PDF

Effect of Liquid Subcooling on Pool Boiling Heat Transfer in Vertical Annuli with Closed Bottoms (액체과냉도가 하부폐쇄 수직환상공간 내부의 풀비등 열전달에 미치는 영향)

  • Kang Myeong-Gie
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.239-246
    • /
    • 2005
  • Effects of subcooling on pool boiling heat transfer in vertical annuli with closed bottoms have been investigated experimentally. For the test, a tube of 19.1mm diameter and the water at atmospheric pressure have been used. Three annular gaps of 7.05, 18.15, and 28.20 have been tested in the subcooled water and results of the annuli are compared with the data of a single unrestricted tube. The increase in pool subcooling results in much change in heat transfer coefficients. At highly subcooled regions, heat transfer coefficients for the annuli are much larger than those of a single tube. As the heat flux increases and subcooling decrease, a deterioration of heat transfer coefficients is observed at the annulus of 7.05mm gap. Single-phase natural convection and liquid agitation are the governing mechanisms for the single tube while liquid agitation and bubble coalescence are the major factors at the bottom closed annuli.

Morphology of Methane/Propane Clathrate Hydrate Crystal (메탄/프로판 포접 하이드레이트 결정의 성장 특성)

  • Lee, Ju Dong;Englezos, Peter;Yoon, Yong Seok;Song, Myungho
    • Korean Chemical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.400-409
    • /
    • 2007
  • Morphology of methane/propane clathrate hydrate crystal was investigated under different undercooling conditions. After the water pressurized with compound guest gas was fully saturated by agitation, medium within the vessel was rapidly undercooled and maintained at the constant temperature while the visual observations using microscope revealed detailed features of subsequent crystal nucleation, migration, growth and interference occurring within liquid pool. The growth of hydrate was always initiated with film formations at the bounding surface between bulk gas and liquid regions under all tested experimental conditions. Then a number of small crystals ascended, some of which settled beneath the hydrate film. When undercooling was relatively small, some of the settled crystals slowly grew into faceted columns. As the undercooling increased, the downward growth of crystals underneath the hydrate film became dendritic and occurred with greater rate and with finer arm spacing. The shapes of the floating crystals within liquid pool were diverse and included octahedron and triangular or hexagonal platelet. When the undercooling was small, the octahedral crystals were found dominant. As the undercooling increased, the shape of the floating crystals also became dendritic. The detailed growth characteristics of floating crystals are reported focused on the influences caused by undercooling and memory effect.

Experimental Study on Heat Flux Partitioning in Subcooled Nucleate Boiling on Vertical Wall (수직 벽면에서 과냉 핵비등 시 열유속 분배에 관한 실험적 연구)

  • Song, Junkyu;Park, Junseok;Jung, Satbyoul;Kim, Hyungdae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.6
    • /
    • pp.465-474
    • /
    • 2014
  • To validate the accuracy of the boiling heat flux partitioning model, an experiment was performed to investigate how the wall heat flux is divided into the three heat transfer modes of evaporation, quenching, and single-phase convection during subcooled nucleate boiling on a vertical wall. For the experimental partitioning of the wall heat flux, the wall heat flux and liquid-vapor distributions were simultaneously obtained using synchronized infrared thermometry and the total reflection technique. Boiling experiments of water with subcooling of $10^{\circ}C$ were conducted under atmospheric pressure, and the results obtained at the wall superheat of $12^{\circ}C$ and average heat flux of $283kW/m^2$were analyzed. There was a large difference in the heat flux partitioning results between the experiment and correlation, and the bubble departure diameter and bubble influence factor, which account for a portion of the surrounding superheated liquid layer detached by the departure of a bubble, were found to be important fundamental boiling parameters.

Design of Copper Sheets to Subcool Liquid Nitrogen in HTS Transformer (HTS변압기의 액체질소 과냉을 위한 구리판의 설계)

  • ;;Steven W. Van Sciver
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.291-294
    • /
    • 2003
  • In our newly proposed cryogenic systems for HTS transformer, liquid nitrogen is subcooled by copper sheets extended from coldhead of cryocooler. Since the shape of copper sheets has been given by the shape of HTS windings and electrical restriction, the thickness of copper sheets is the main parameter to determine operating temperature in HTS windings. Temperature distributions between windings and coldhead are investigated by heat transfer analysis, from which the thickness of copper sheets to maintain every part of windings below 66 K is calculated. The effects of the amount of AC loss on the temperature distributions in cooling system are also presented.

  • PDF

Measurement of Average Pool Boiling Heat Transfer Coefficient on Near-Horizontal Tube (수평 가까운 튜브 표면의 평균 풀비등 열전달계수의 측정)

  • Kang, Myeong-Gie
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.81-88
    • /
    • 2014
  • An experimental study is performed to obtain an average heat transfer coefficient around the perimeter of a near horizontal tube. For the test a stainless steel tube of 50.8 mm diameter submerged in water at atmospheric pressure is used. Both subcooled and saturated pool boiling conditions are considered and the inclination angle of the tube is changed from the horizontal position to $9^{\circ}$ in steps of $3^{\circ}$. In saturated water, the local boiling heat transfer coefficient at the azimuthal angle of $90^{\circ}$ from the tube bottom can be regarded as the average of the coefficients regardless of the tube inclination angles. However, when the water is subcooled the location for the average heat transfer coefficient depends on the inclination angle and the heat flux. It is explained that the major mechanisms changing the heat transfer are closely related with the intensity of the liquid agitation and the generation of big size bubbles through bubble coalescence.

Thermal diffusion experiment of impulsive heat in subcooled liquid nitrogen (과냉 액체질소 내에서 순간적 열확산 실험)

  • Choi, J.H.;Ha, J.C.;Byun, J.J.;Chang, H.M.;Kim, H.M.;Ko, T.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.1
    • /
    • pp.65-70
    • /
    • 2006
  • Transient heat transfer caused by an impulsive heating in subcooled liquid nitrogen is investigated experimentally. This study is part of out ongoing efforts directed to a stable cryogenic cooling system lot superconducting fault current limiters (SFCL). A thin heater attached by epoxy on one surface of a GFRP plate is immersed in liquid-nitrogen bath at temperatures between 77 K and 55 K. A strong heat flux up to $150W/cm^2$ is generated lot 100 ms, and the temperature of the heater sulfate is measured as a function of time. The behavior of bubbles on the heating surface can be explained by comparing the measured temperature history for vertical and two horizontal (up and down) orientations. It is concluded that the subcooling of liquid nitrogen below 70 K is very effective in suppressing bubbles, resulting in better thermal protection and faster recovery from an impulsive heat.