• Title/Summary/Keyword: 액체펌프

Search Result 298, Processing Time 0.026 seconds

Analysis of Transient Characteristics for Turbopump-fed Liquid Propellant Rocekt Engine in Start-up (터보펌프식 액체 로켓 엔진의 시동 과도 특성 해석)

  • Son, Min;Kim, Duk-Hyun;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.34-37
    • /
    • 2010
  • One dimensional transient analysis was studied for turbopump-fed liquid propellant rocket engine(LRE) system in starting using AMESim. The effects of timing of gas generator fuel valve opening and gas generator ignition to start-up stability were researched for open cycle type system using LOX/RP-1 to propellants. Result show that the parameters and sequence on start-up should be considered to design optimized turbopump-fed LRE system.

  • PDF

하나로 냉중성자원 진공계통의 운전 특성

  • Son, U-Jeong;Lee, Mun;Kim, Min-Su;Choe, Ho-Yeong;Han, Jae-Sam;Jo, Seong-Hwan;Heo, Sun-Ok;An, Guk-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.366-366
    • /
    • 2011
  • 냉중성자원은 하나로 반사체탱크에 위치한 수직공에 설치되어 노심에서 발생하는 열중성자를 감속재인 액체수소층을 통과시켜 냉중성자를 생산하는 설비로 수소가를 충전하고 있는 수소계통이 있으며, 21K의 극저온 액체수소/기체수소 2상(ttwo-phase)을 유지하기 위해 외부에서 유입되는 열침입을 최소화하기 위해 진공계통이 설치되어 있다. 진공계통은 수조내기기 집합체(In-Pool Assembly : IPA)의 액체수소 열사이펀, 감속재 용기 등의 냉중성자원 극저온 부풀들의 단열을 위하여 진공용기 내부진공도를 공정진공도 이하로 유지하기 위한 계통으로 고진공펌프, 진공배기탱크 및 저진공펌프의 조합으로 두 개의 진공펌프시스템과 진공박스, 배기수집탱크 및 밸브박스를 포함한 연결배관으로 설계되었다. 저진공펌프를 이용하여 대기압에서 고진공펌프 작동압력까지 도달한 후 고진공펌프를 가동하여 공정진공도 이하의 진공도를 확보하고, 고진공펌프로부터 배기되는 배출가스는 고진공펌프 후단에 설치된 진공배기탱크에 포집되며, 필요 시 저진공펌프레 의하여 배기수집탱크로 배출된다. 진공펌프시스템은 진공용기 내부의 압력이 공정진동고 이하로 유지되도록 연속적으로 가동되어 진공단열이 가능하다. 본 논문은 감속재인 수소를 액화상태로 유지하며, 공정진공도 이하로 충분히 유지되어 운전되는 진공계통의 특성을 원자로 운전 주기별로 소개하고자 한다.

  • PDF

High Frequency Signal Analysis of Fuel Pump for Liquid Rocket Engine under Cavitating Condition (캐비테이션 환경에서의 액체로켓엔진용 연료펌프의 고주파 신호 분석)

  • Kim, Dae-Jin;Kang, Byung Yun;Choi, Chang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1099-1102
    • /
    • 2017
  • High frequency signals are analyzed which are measured at the inlet / outlet pipeline and pump casing during cavitation tests of the fuel pump for the liquid rocket engine. RMS values of each data are shown according to the cavitation number and compared with those of the LOx pump tests and the impact of the cavitation instability is also explored. Analogies about the cavitation number are confirmed between high frequency data of both pumps. In addition, the cavitation instability is found in all the signals and has an affect on the outlet pressure pulsation of the fuel pump.

  • PDF

Introduction to Construction of a Turbopump Real-Propellant Test Facility (터보펌프 실매질 시험설비 구축에 대한 소개)

  • Kim, Jin-Sun;Ko, Young-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.835-840
    • /
    • 2011
  • The development of a turbopump is fundamental to have an independent LRE(liquid rocket engine) for KSLV-II. Recently, the detail design of a turbopump real-propellant test facility based on liquid oxygen and kerosene has been performed to structure the test facility for the experimental validation of the turbopump. In this paper, the design requirements of the turbopump and the specifications of the test facility was presented and the representative sub-facilities were explained on the basis of the design results. Also, the uncertainty of the sub-facilities which could be appeared during the operation was removed in advance through the simulation method and the experimental verification.

  • PDF

Basic Design of High Pressure LOx Lines for a Liquid Rocket Engine (액체로켓엔진 액체산소 고압 배관부 기본설계)

  • Moon, Il-Yoon;Yoo, Jae-Han;Moon, In-Sang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.107-110
    • /
    • 2009
  • A basic design for a Technical Development Model (TDM) of liquid oxygen lines from the turbopump exit to the oxidizer valves of the combustion chamber and the gas generator was conducted to develop a turbopump-fed liquid rocket engine. The TDM is composed of straight lines, elbows, bellows, a branch, an orifice, flanges and a heat insulator. Materials were determined by consideration of operation conditions, weight constraint and manufacturing procedures. The size and the location of each component were determined by flow analysis of the required flowrate and the pressure loss. Basic designs of the components were conducted by consideration of the operating temperature and the maximum expectation operating pressure. The safety factors were evaluated by structural analysis of design of each component.

  • PDF

Study on Turbopump-Gas Generator Open-Loop Coupled Test (터보펌프-가스발생기 개회로 연계시험 연구)

  • Kim, Seung-Han;Nam, Chang-Ho;Kim, Cheul-Woong;Moon, Yoon-Wan;Seol, Woo-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.563-568
    • /
    • 2010
  • Turbopump-gas generator open-loop coupled tests are performed during the development of a 30tonf-LOx/Kerosene rocket engine. In the turbopump-gas generator open-loop tests, the propellants to gas generator are supplied from the outlets of turbopump, while the gas exhausted from the gas generator is vented out to the atmosphere, instead of being used to turbine driving. This paper presents the objectives, procedure, and results of the open-loop coupled test, in addition to a schematic representation of the test apparatus and the operating conditions for the test facility system and control system. The results of turbopump-gas generator open-loop coupled test confirm chill-down procedure, startup characteristics, nominal operability and smooth shutdown of the open-loop coupled Test Plant in test conditions simulating engine system operation environment.

Development of bearing/sealing test facility for turbopump system (터보펌프 시스템용 베어링/실 시험설비 개발)

  • 우관제;김경호;우유철
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.25-28
    • /
    • 2003
  • The bearing/sealing test (BST) facility is intended for tests of bearing and seal for turbopump of liquid rocket engine (LRE) in various media (water, liquid nitrogen, liquid oxygen). The bearing test for serviceability is fulfilled with the estimation of the flow rate of cooling medium through the test bearing separator and with the simulation of axial and(or) radial loading. The purpose of seals test is the determination of magnitude of leakages through the seal and a time variation of this magnitude.

  • PDF

Dynamic Characteristics Prediction of Liquid Rocket Engine for the Transient Sequence Part-II : Propellent Feeding System Modelling and Validation (액체로켓엔진 천이 동특성 예측 Part-II : 추진제 공급 시스템 모델링 및 검증)

  • Ko, Tae-Ho;Jeong, Yu-Shin;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.181-189
    • /
    • 2010
  • 개방형 액체로켓엔진 시스템에 대한 동특성 예측 프로그램을 작성하였다. 이 프로그램을 통해 얻은 펌프 시동 시 시간에 따른 압력 및 유량 변화 결과를 수류실험장치를 구축하여 실험적으로 검증하였다. 수류실험장치는 실제 액체로켓엔진 추진제 공급 계통에서 구성품의 형태와 배치위치, 가스발생기와 주연소실로 분기되는 유량비를 기준으로 모사되었다. 측정 시 관로가 채워진 상태에서 펌프를 시동하였으며 펌프는 전동기로 구동된다. 동특성 예측 프로그램의 작성을 위해 구성품별 동특성 모델링을 수행하고 엔진 시스템을 기준으로 각 모델링을 순차적으로 통합하였다. 구성품의 동특성 파라미터를 측정 반영하였고 압력 밸런싱을 통해 수렴 조건이 결정된다. 수렴된 밀도와 유량을 가지고 다음 시간에서의 초기 입력 값으로 대체하여 계산을 수행하였다. 천이 작동 상태에서 엔진 시스템 내의 물리량 변화를 전산 예측과 더불어 실험적으로 측정하고 비교하였다.

  • PDF

Hot-Fire Test of a Turbopump for a 30 Ton Class Engine in Real Propellant Environment (30톤급 엔진용 터보펌프 실매질 고온시험)

  • Hong, Soon-Sam;Kim, Jin-Sun;Kim, Dae-Jin;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.11-17
    • /
    • 2009
  • Hot-fire test of a turbopump for a gas generator cycle rocket engine of 30 ton class was carried out in real propellant environment. Liquid oxygen and kerosene were used for the oxidizer pump and the fuel pump, respectively, while hot gas produced by the gas generator was supplied to the turbine. A part of the propellant discharged from the pumps was provided to the gas generator. The turbopump was run stably at both on-design and off-design conditions, satisfying all the performance requirements. This paper describes one of the test cases, where the turbopump was run for 120 seconds at three different operating modes in one test. In terms of performance characteristics of pumps and turbine, the results from turbopump assembly test using real propellant showed a good agreement with those from the turbopump component tests using simulant working fluid.

  • PDF

Design Review of Combustion Chamber/Turbo-pump Test Facility of Liquid Rocket Engine for KSLV-II (한국형발사체 액체엔진 연소기 및 터보펌프 시험설비 배치 및 설계에 대한 검토)

  • Han, Yeoung-Min;Cho, Nam-Kyung;Chung, Young-Gahp;Kim, Seung-Han;Yu, Byung-Il;Lee, Kwang-Jin;Kim, Jin-Sun;Kim, Ji-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.109-112
    • /
    • 2011
  • The result of design review and arrangement of a combustion chamber test facility(CTF) and a turbo-pump real propellant test facility(TPTF) is briefly described. The development/qualification tests of combustion chamber and turbo-pump for 75ton-class liquid rocket engine will be performed in CTF and TPTF. The critical design of hydraulic-pneumatic system, control and data acquisition system, test stand cell, and auxiliary facilities in CTF and TPTF was performed.

  • PDF