• Title/Summary/Keyword: 액체로켓 연소기

Search Result 380, Processing Time 0.024 seconds

Thrust Performance of 1-lbf Class of Liquid-Monopropellant Rocket Engine (1-lbf급 단일액체추진제 로켓엔진의 추력 성능)

  • 김정수
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.2
    • /
    • pp.32-38
    • /
    • 2004
  • A comprehensive understanding is given for the hot-firing test results, which were obtained throughout the verification program of mono-propellant hydrazine rocket engines (thrusters) producing 0.95 lbf (4.2 N) of nominal steady-state thrust at an inlet pressure of 350 psia (2.41 Mpa). A scrutiny for the engine performance is made in terms of thrust and temperature behavior of steady state firing mode at the given propellant injection pressures: Pinj = 400, 250, 100, and 50 psi. The thrust and specific impulse are compared with a reference performance of 1-lbf standard rocket engines and their normalization procedure is introduced. A practical engineering approach to the data measurement and reduction is addressed, too.

Rocket Engine Test Facility Improvement for Hot Firing Test of 75 ton-f Class Gas Generator and Cold Flow Test (75톤급 가스발생기 연소시험을 위한 시험장 개선 및 수류시험)

  • Kang, Dong-Hyuk;Lim, Byoung-Jik;Ahn, Kyu-Bok;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.29-33
    • /
    • 2009
  • On the basis of the development experience of a gas generator for the 30 ton-f thrust liquid rocket engine combustor a Subscale Ground Firing Test Facility was designed and fabricated for a gas generator for the 75 ton-f thrust liquid rocket engine combustor. The Subscale Ground Firing Test Facility developed is going to be used to develop 75 ton-f class gas generator. Acquired data and test technique from this facility will be used to develope the high performance liquid rocket engine combustor and the Ground Firing Test Facility. This report describes the improved Subscale Ground Firing Test Facility for 75 ton-f class gas generator and results of the cold flow test.

  • PDF

Study on Combustion Gas Properties of a Fuel-Rich Gas Generator (연료 과농 가스발생기의 연소 가스 물성치에 관한 연구)

  • 서성현;최환석;한영민;김성구
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.10
    • /
    • pp.56-60
    • /
    • 2006
  • It is essential to predict thermodynamic properties of combustion gas with respect to a propellant mixture ratio for the development of a gas generator for a liquid rocket engine. The present study shows the temperature measurement of exit combustion gas as a function of a mixture ratio through the series of combustion tests of a fuel-rich gas generator with liquid oxygen and Jet A-1. The measurements of dynamic and static pressures, and combustion gas temperatures allowed the estimation of thermodynamic properties like a specific heat ratio, a gas constant, and a constant pressure specific heat of the combustion gas. The comparison of the experimental results with predictions made by interpolation parameters obtained from the modification of the chemical equilibrium code indicates that the interpolation method calibrated using the temperature measurements can be utilized as an effective tool for the initial design of a fuel-rich gas generator.

Study on Heat Transfer Characteristic of Liquid Rocket Engine with Calorimeter (칼로리미터를 적용한 액체로켓엔진의 열전달 특성 연구)

  • NamKoung Hyuck-Joon;Han Poong-Gyoo;Kim Hwa-Jung;Kim Dong-Hwan;Lee Kyoung-Hun;Kim Young-Soo;Yoon Young-Bin;Kim Dong-Jun;Kim Sung-Hyuk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.213-219
    • /
    • 2005
  • Small liquid rocket engine (SLRE) with calorimeter were developed and tested to evaluate cooling characteristics in the liquid rocket engine. Therefore, cooling performance analysis was performed to predict the heat transfer coefficient on gas side wall in 10 calorimeter channel. A heat transfer empirical formula was determined by results of firing test and computational simulation.

  • PDF

The Tensile Strength at Room Temperature of Brazing Section for Materials used for Liquid Rocket Engine Combustion Chamber (액체 로켓엔진 연소기 사용 재료의 상온 브레이징부 인장강도 특성)

  • 정용현;류철성;최민수
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.4
    • /
    • pp.73-79
    • /
    • 2003
  • The tensile strength test and the analysis for the section of brazing were performed in the cases of materials used for combustion chamber of regeneratively cooled liquid rocket engine. BNi-2 and BNi-7 based on nickel were used for brazing as filler metal. The properties of material and filler metal were analyzed by tensile strength test and metal microscope for 12 specimens. The tensile-strength of brazing for chrome-copper alloy and other kinds of alloy was higher than that of chrome-zirconium-copper alloy and other kinds of alloy The tensile strength in the case of BNi-2 as filler metal was higher than that of BNi-7 because the wetting property of BNi-2 was better than that of BNi-7.

초임계 난류연소 모델링

  • Park, Tae-Seon
    • Journal of the KSME
    • /
    • v.56 no.9
    • /
    • pp.32-37
    • /
    • 2016
  • 초임계 유체의 고유한 물리적 특성변화와 난류유동을 결합하여 성능을 높이는 데 활용하고 있는 가장 대표적인 시스템 중의 하나는 연소기이다. 이때 연료와 산화제의 연소반응은 저압조건과 다른 고유한 특성을 가지고 있어 기존의 연소모델에 의해서는 정확한 분석이 어렵게 된다. 따라서 초임계 압력조건에 대한 연소과정을 분석할 수 있는 연소모델이 필요하고 이러한 연소과정이 난류유동조건에서 발생하기 때문에 최근 많은 연구가 초임계 난류연소모델 개발에 집중되어 왔다. 이 글에서는 특히 액체로켓엔진 관련 초임계 연소모델 개발 분야의 연구동향을 살펴보고자 한다.

  • PDF

비연소 혼합시험을 통한 이중스월 분사기의 연소성능 예측

  • Ryu, Eung-Hyun;Han, Jae-Seob;Kim, Yoo;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.7-7
    • /
    • 2000
  • 액체추진 로켓 분야에서 비연소 혼합시험(cold flow mixing test)은 로켓엔진의 성능을 예측하고 인젝터와 관련된 문제의 진단에 도움을 줄 수 있는 자료를 확보할 수 있는 수단이 된다. 비연소 혼합시험이 실제 연소시험을 대신할 수 있는 신뢰성 있는 자료를 제공할 수는 없지만, 인젝터의 최적형상을 설계하기 위해서 실시해야할 고 비용의 연소시험에 대한 횟수를 줄일 수 있는 보조시험으로서의 역할을 할 수 있다. 혼합시험 성능이 우수한 인젝터가 수력학적인 혼합성능을 능가하는 연소반응에 의해서 실제 연소시험에서는 성능이 저하되는 경우도 있을 수 있으나 대부분의 경우에는 비연소 혼합시험에서 좋은 성능을 나타내는 인젝터는 실제 연소시험에서도 좋은 성능을 나타낸다. 일반적으로 비연소시험과 연소시험 사이의 상관 관계를 정확히 정립하기 위해서는 많은 상관 관계 변수의 적용 및 충분한 혼합시험 자료가 요구된다.

  • PDF

An Experimental Study of the Rocket Preburner Injector (로켓 프리버너 분사기의 성능특성 연구)

  • Yang, Joon-Ho;So, Youn-Seok;Choi, Hyun-Kyung;Choi, Seong-Man;Han, Young-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.47-53
    • /
    • 2006
  • The oxidizer-rich preburner is applied to the high efficiency closed cycle rocket propulsion system. This system is generally operated on oxidizer-fuel mixture ratio over than 50. The spray quality and mixing performance are very important for safe combustion of this preburner. This paper presents basic concept and spray characteristic of the preburner injector.

  • PDF

Layout and Development Status of Propulsion Test Facilities for KSLV-II (한국형발사체 추진기관 시험설비 배치 및 구축현황)

  • Han, Yeoung-Min;Cho, Nam-Kyung;Chung, Young-Gahp;Kim, Seung-Han;Yu, Byung-Il;Lee, Kwang-Jin;Kim, Jin-Sun;Kim, Ji-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.139-142
    • /
    • 2012
  • The deign and development status of a combustion chamber test facility(CTF), a turbopump real propellant test facility(TPTF), a rocket engine test facility for 3rd stage engine(SReTF), a rocket engine ground/high altitude test facility(ReTF, HAReTF) and a propulsion system test complex(PSTC) for KSLV-II is briefly described. The development/qualification tests of engine component, 3rd stage engine system and 75ton-class liquid rocket engine system will be performed in CTF, TPTF, SReTF, ReTF and HAReTF and the development test of $1^{st}/2^{nd}/3^{rd}$ propulsion systems for KSLV-II will be performed in PSTC. The CTF/TPTF are under construction such as ordering the long delivery items and the detailed design of ReTF/PSTC is being prepared.

  • PDF

Research Activities of Transpiration Cooling for Liquid Rocket and Air-breathing Propulsions (액체로켓과 공기흡입식 추진기관을 위한 분출냉각의 연구동향)

  • Hwang, Ki-Young;Kim, You-Il;Song, In-Hyuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.235-240
    • /
    • 2010
  • Transpiration cooling is the most effective cooling technique for liquid rocket and air-breathing engines operating in aggressive environments with higher pressures and temperatures. Combustor liners and turbine vanes are cooled by the coolant(air or fuel) passing through their porous walls and also the exit coolant acting as an insulating film. However, its practical implementation has been hampered by the limitations of available porous materials. The search for more practical methods of increasing the internal heat transfer within the walls has led to the development of multi-laminate porous structures, such as Lamilloy$^{(R)}$ and Transply$^{(R)}$. This paper reviews recent research activities of transpiration cooling for the propulsions of liquid rocket, gas turbine, and scramjet.

  • PDF