• 제목/요약/키워드: 액적 유동

Search Result 178, Processing Time 0.027 seconds

Spray Combustion Analysis for Unsteady State in Combustion Chamber of Liquid Rocket Engine Considering Droplet Fluctuation (액적변동을 고려한 액체로켓의 연소실 내 비정상 분무연소 해석)

  • Jeong, Dae-Kwon;Roh, Tae-Seong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.175-178
    • /
    • 2006
  • A numerical study for spray combustion of fluctuated fuel and oxidizer droplets injected into combustion chamber has been conducted for the analysis of spray combustion considering characteristics of injector. The 2 dimensional unsteady state flow fields have been calculated by using QUICK Scheme and SIMPLER Algorithm. As the spray model, DSF model and Euler-Lagrange Scheme have been used. The sine Auction has been used for droplet fluctuation model of fuel and oxidizer, while the coupling effects of the droplets between gas phase and evaporated vapor have been calculated by using PSIC model.

  • PDF

Fuel Droplet Vaporization Characterization in High-Pressure Flow Field (고압 유동장에서의 액적증발 특성 해석)

  • You, Yongwook;Kim, Yongmo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.8
    • /
    • pp.1121-1131
    • /
    • 1998
  • The present study is numerically investigated for the high-pressure effects on the vaporization process in the convection-dominating flow field. Numerical results agree well with the available experimental data. The fuel droplet vaporization characterization is parametrically studied for the wide range of the operating conditions encountered with the high-pressure combustion process of turbocharged diesel engines.

A Sensitivity Study of the Number of Parcels to the Numerical Simulation of Sprinkler Sprays (통계적 액적군집수에 따른 스프링클러 분무해석의 민감도에 관한 연구)

  • Kim, Sung-Chan;Lee, Sang-Woo;Park, Won-Ju
    • Fire Science and Engineering
    • /
    • v.23 no.1
    • /
    • pp.48-54
    • /
    • 2009
  • The present study has been performed to investigate the effect of statistical number of droplets on the simulation of the sprinkler spray using fire field model. In order to simulate the sprinkler spray characteristics, the present study uses NIST Fire Dynamics Simulator version 5.2. A group of Lagrangian particles with similar droplet characteristics, such as diameter, velocity, temperature and so on, is represented by parcel concept to decrease the total number of droplets tracked in the simulation. The present study introduces a new parameter to represent the ratio between real number of droplets and computational parcels. The dependency of the number of parcels on the fire suppression characteristics and spray patterns is quantitatively examined for different ratio between the real number of droplets and computational parcels.

Computational Analysis on the Control of Droplet Entrained in the Exhaust from the Spray Type Scrubber system (스프레이형 스크러버의 배출가스에 포함된 액적의 제어방법에 관한 전산해석적 연구)

  • Lee, Chanhyun;Chang, Hyuksang;Koo, Seongmo
    • Clean Technology
    • /
    • v.21 no.3
    • /
    • pp.191-199
    • /
    • 2015
  • The SOx emission from the ship diesel engines will do a negative influence to the human health and the environment. To reduce the negative environmental effect of the SOx emission caused by the high traffic of ship movements, the SECA (SOx emission control area) has been set on several province around world to carry out the severe emissions control and to meet the emissions control standard. To cut down the SOx emission from the ships, the wet type scrubber is being used widely. In this work, we prepared a numerical model to simulate the spray type scrubber to study the motion of liquid droplets in the flow of the scrubber. For the analysis, the CFD (computational fluid dynamics) method was adopted. As a special topic of the study, we designed the wave plate type of mist eliminator to check the carry over of the uncontrolled water droplet to the exhaust. Numerical analysis is divided into two stages. At the first stage, the analysis was done on the basic scrubber without the mist eliminator, and then the second stage of analysis was done on the scrubber with the mist eliminator on several condition to check and compare with the basic scrubber. On the condition of the basic scrubber, 42.0% of the distributed water droplets were carried over to the exhaust. But by adding the designed droplet eliminator at the exhaust of the scrubber, only 3.4% of the distributed water droplets supplied to the scrubber was emitted to the atmosphere.

NUMERICAL SIMULATION OF A TRANSONIC AIRFOIL IN THE CLOUD WITH THE DROPLET-LADEN INVISCID AIR FLOW MODEL (액적이 있는 비점성 공기유동 모델을 이용한 구름속의 천음속 에어포일 수치해석)

  • Yeom, G.S.;Chang, K.S.;Baek, S.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.291-293
    • /
    • 2011
  • In this paper, the problem of transonic aerodynamic characteristics of a NACA0012 airfoil is numerically investigated in the inviscid gas-droplet two-phase flow with the compressible two-fluid model. In the present study, the airfoil flight in the cloud is simulated by taking account of the viscous drag of the droplets, the heat transfer, the phase change, and the droplet fragmentation The two-fluid equation system is solved by the fractional-step method and the WAF-HIL scheme. The effects of size and volume fraction of the droplets on the flow characteristics of the airfoil in the cloud are elaborated and discussed.

  • PDF

이상 유동이 존재하는 고체 로켓 노즐내에서의 성능손실에 대한 수치적 연구

  • 유만선;김병기;조형희;황기영;배주찬
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.30-30
    • /
    • 2000
  • 일반적인 소형 고체로켓의 모터 내에는 연료 첨가제로써 알루미늄이 함유되는데, 연소 시 산화된 이 성분은 액적 상태로 이동하여 노즐부내에 이상유동장을 형성시킨다. 이러한 산화알루미늄입자는 노즐벽면에 충돌, 점착하여 기계적, 열적 에너지전달을 일으키며 노즐벽면의 삭마를 유발시키는 한편, 가스유동과의 속도 차, 온도차로 인해 저항요소로 작용하면서 노즐의 추력 성능 손실에 간접, 직접적인 원인이 된다.(중략)

  • PDF

Characteristics of Heptane Droplet Vaporization in High-Pressure and Temperature Flow Field (고온 고압 유동장에서 햅탄 액적의 기화 특성)

  • Ko, Jung-Bin;Koo, Ja-Ye
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.83-89
    • /
    • 2004
  • Vaporization characteristics of a liquid heptane droplet in high-pressure and temperature flow field are numerically studied. Variable thermodynamic and transport properties and high-pressure effects are taken into account in order to consider real gas effects. Droplet Vaporization in convective environments was investigated on the basis of droplet vaporization in quiescent and convective environment. In quiescent environments, droplet lifetime is directly proportional to pressure at the subcritical temperature range but it is inversely proportional to pressure at the supercritical temperature range. In convective environment, droplet deformation becomes stronger by increasing Reynolds number due to increase of velocity while droplet deformation is relatively weak at a higher pressure for the same Reynolds number cases.

  • PDF

Prediction for Slag Mass Accumulation in the Kick Motor (킥모터 슬래그 적층량 예측)

  • Jang, Je-Sun;Kim, Byung-Hun;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.217-220
    • /
    • 2008
  • Slag mass deposition was required to predict accurate performance of kick motor (KM) system. Slag mass accumulation was analyzed through the aluminum oxide particle paths to predict slag mass deposition. Numerical analysis to solve both flow field and droplet accumulation was performed with Fluent 6.3 program. The effects for the acceleration and diameters of the aluminum oxide particles was analyzed, finally total slag mass accumulation was acquired. It confirmed that the slag mass deposition was agreed well with previously slag mass prediction based on KM ground test.

  • PDF

Effect of Gas-liquid Ratio on Characterization of Two-Phase Spray Injected into a Cross-flow (횡단유동에 분사된 이유체 분무의 기체 액체비가 분무특성에 미치는 영향)

  • Cho, Woo-Jin;Lee, In-Chul;Lee, Bong-Su;Koo, Ja-Ye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.1
    • /
    • pp.16-22
    • /
    • 2008
  • The effect of two-phase spray injected into subsonic cross-flow was studied experimentally. External-mixing of two-phase spray from orifice nozzle with L/d of 3 was tested with various air-liquid ratio that ranges from 0 to 59.4%. Trajectory of spray and breakup phenomena were investigated by shadowgraph photography. Detailed spray structure was characterized in terms of SMD, droplet velocity, and volume flux using PDPA. Experimental results indicate that penetration length was increased and collision point of liquid jets approached to nozzle exit and distributions of mist-like spray were obtained by increasing air-liquid ratio.