• Title/Summary/Keyword: 액적화

Search Result 160, Processing Time 0.02 seconds

Automated Bacterial Cell Counting Method in a Droplet Using ImageJ (이미지 분석 프로그램을 이용한 액적 내 세포 계수 방법)

  • Jingyeong Kim;Jae Seong Kim;Chang-Soo Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.247-257
    • /
    • 2023
  • Precise counting of cell number stands in important position within clinical and research laboratories. Conventional methods such as hemocytometer, migration/invasion assay, or automated cell counters have limited in analytical time, cost, and accuracy., which needs an alternative way with time-efficient in-situ approach to broaden the application avenue. Here, we present simple coding-based cell counting method using image analysis tool, freely available image software (ImageJ). Firstly, we encapsulated RFP-expressing bacteria in a droplet using microfluidic device and automatically performed fluorescence image-based analysis for the quantification of cell numbers. Also, time-lapse images were captured for tracking the change of cell numbers in a droplet containing different concentrations of antibiotics. This study confirms that our approach is approximately 15 times faster and provides more accurate number of cells in a droplet than the external analysis program method. We envision that it can be used to the development of high-throughput image-based cell counting analysis.

Numerical Study on the Atomization Process of a Supersonic Gas-Metallic Liquid Atomizer (초음속기체-금속액체 분사기의 미립화 과정에 대한 수치해석)

  • Hwang, Won-Sub;Kim, Kui-Soon;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.7
    • /
    • pp.593-602
    • /
    • 2016
  • Numerical simulations on the close-coupled supersonic gas atomizer for metallic powder production were performed in this study. A proper turbulence model was chosen and then VOF(Volume of Fluid) and DPM(Discrete Phase Model) methods were sequentially applied for the simulations of primary and secondary break-up processes of liquid metal. Diameters of parent droplets were calculated by analyzing Level-Set function contour from the VOF result. Finally, the distribution of particle diameter was obtained from the DPM result at exit of the computational domain.

Numerical Study on the Evaporation Characteristics of Biocrude-oil Produced by Fast Pyrolysis (급속열분해를 통하여 생산된 바이오오일 액적의 증발 특성에 관한 수치해석적 연구)

  • Choi, Sang Kyu;Choi, Yeon Seok;Kim, Seock Joon;Han, So Young
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.646-652
    • /
    • 2016
  • Biomass is regarded as one of the promising energy sources to deal with the depletion of fossil fuels and the global warming issue. Biocrude-oil can be produced through the fast pyrolysis of biomass feedstocks such as wood, crops, agricultural and forestry residues. It has significantly higher viscosity than that of conventional petroleum fuel and contains solid residues, which can lower the spray and atomization characteristics when applied to the burner. In addition, biocrude-oil consists of hundreds of chemical species derived from cellulose, hemicellulose and lignin, and evaporation characteristics of the biocrude-oil droplet are distinct from the conventional fuels. In the present study, a numerical study was performed to investigate the evaporation characteristics of biocrude-oil droplet using a simplified composition of the model biocrude-oil which consists of acetic acid, levoglucosan, phenol, and water. The evaporation characteristics of droplets were compared at various surrounding air temperatures, initial droplet diameters, and ethanol mixing ratios. The evaporation time becomes shorter with increasing air temperature, and it is much sensitive to the air temperature particularly in low temperature ranges. It was also found that the biocrude-oil droplet evaporates faster in cases of the smaller initial droplet diameter and larger ethanol mixing ratio.

Effects of Fuel-Injection Pressure on the Spray Breakup Characteristics in Small LRE Injector (소형 액체로켓엔진 인젝터의 분무 분열특성에 대한 연료분사압력의 영향)

  • Jung, Hun;Kim, Sung-Cho;Park, Jeong;Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.3
    • /
    • pp.50-57
    • /
    • 2007
  • Spray characteristics of an injector in a small liquid rocket engine (LRE) is characterized by Particle Image Velocimetry (PIV) and Dual-mode Phase Doppler Anemometry (DPDA). Instantaneous plane images captured by PIV are examined for the qualitative prediction of spray breakup with the setup of evaluation technique for effect of spray angles on injector performance. DPDA is also applied in order to quantify the average velocity, turbulent intensity, SMD, and number density of spray droplets along the spray stream distance leading to precise observation of spray atomization behavior. An objective of the study is the derivation of design parameters of new injectors and the establishment of performance criteria through the clear understanding of spray characteristics.

Stochastic Model Comparison for the Breakup and Atomization of a Liquid Jet using LES (LES 해석에서 액체제트의 분열에 대한 확률론적 분열 모델링 비교)

  • Yoo, YoungLin;Sung, Hong-Gye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.6
    • /
    • pp.447-454
    • /
    • 2017
  • A three-dimensional two-phase large eddy simulation(LES) has been conducted to investigate the breakup and atomization of liquid jets such as a diesel jet in parallel flow and water jet in cross flow. Gas-liquid two-phase flow was solved by a combined model of Eulerian for gas flow and Lagrangian for a liquid jet. Two stochastic breakup models were implemented to simulate the liquid column and droplet breakup process. The penetration depth and SMD(Sauter Mean Diameter) were analyzed, which was comparable with the experimental data.

Evaluation of Coconut Oil-based Emulsion Stability Using Tween-Span Type Nonionic Mixed Surfactant (Tween-Span계 비이온성 혼합계면활성제를 이용한 Coconut Oil 원료 유화액의 유화안정성 평가)

  • Hong, Seheum;Zhu, Kaiyang;Zuo, Chengliang;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.453-459
    • /
    • 2019
  • In this study, the influence factors on the stability of the O/W (oil in water) emulsions prepared with coconut oil and the nonionic mixed surfactant (Tween 80-Span 80) were evaluated. The concentration and HLB value of the nonionic mixed surfactant, and the degree of agitation were used as manufacture factors. The stability of prepared O/W emulsions were measured with the mean droplet size, zeta-potential, emulsion stability index (ESI), and thermal instability index (TII). The mean droplet size of the prepared O/W emulsions was from 100 to 200 nm. As the concentration of mixed surfactant and the homogenization speed increased, the droplet sizes decreased, while the zeta-potential values increased. The effect of HLB values increased in the order of 6.0, 10.0 and 8.0, and at the HLB value of 8 the smallest mean droplet size as 120 nm was obtained whereas the largest value of the zeta-potential between 10 and 60 mV. From the results of ESI and TII, the stability of prepared O/W emulsions increased in order of 6.0, 10.0 and 8.0 of HLB values, and ESI and TII values were above 80% and below 20% respectively at HLB value of 8.0.

A Study on the Encapsulation of Cosmetic Oil Using Computational Fluid Dynamics (전산유체역학을 이용한 화장품 오일 캡슐레이션 현상에 대한 연구)

  • Jeong, Nam-Gyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.638-643
    • /
    • 2021
  • Oil is used in various industries, including the agricultural sector, food industry, and functional cosmetics. These oils are chemically unstable and prone to oxidation when exposed to oxygen, light, moisture, or high temperatures. Therefore, various attempts have been made to encapsulate them so that they are not exposed to such environments. When oil is injected into a refrigerant with greater density, the oil can be encapsulated as it rises due to buoyancy caused by the density difference. In this study, oil encapsulation was simulated to find the optimal conditions for operating equipment using computational fluid dynamics (CFD) for multiphase flows. Water or serum can be used as a refrigerant. The viscosity of water is relatively small, and if it is used as a refrigerant, oil droplets can be produced well even if oil and water are continuously injected in the equipment. However, the viscosity of serum is very high, and if it is used, the oil is stretched out and does not leave the nozzle. The results show that when using serum as a cooling medium, oil encapsulation is possible if the injection is stopped for some time after instantaneous injection at high speed.

A Study on the Formation of Air Bubble by the Droplet Volume and Dispensing Method in UV NIL (UV NIL공정에서 액적의 양과 도포방법에 따른 기포형성 연구)

  • Lee, Ki Yeon;Kim, Kug Weon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4178-4184
    • /
    • 2013
  • Nanoimprint lithography (NIL) is an emerging technology enabling cost-effective and high-throughput nanofabrication. Recently, the major trends of NIL are high throughput and large area patterning. UV curable type NIL (UV NIL) can be performed at room temperature and low pressure. And one advantage of UV NIL is that it does not need vacuum, which greatly simplifies tool construction, so that vacuum oprated high-precision stages and a large vacuum chamber are no longer needed. However, one key issue in non-vacuum environment is air bubble formation problem. Namely, can the air bubbles be completely removed from the resist. In this paper, the air bubbles formation by the method of droplet application in UV NIL with non-vacuum environment are experimentally studied. The effects of the volume of droplet and the number of dispensing points on air bubble formation are investigated.

Atomization Characteristics of Shear Coaxial Injectors (전단 동축형 인젝터의 미립화 특성에 관한 연구)

  • 정원호;김동준;임지혁;윤영빈
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.168-172
    • /
    • 2003
  • The effects of injection conditions on the droplet sizes resulting from the disintegration of a liquid jet by a fast annular gas stream have been investigated using PDPA. The gas/liquid momentum ratio M = $\rho$$_{g}$ $U_{g}$$^2$/$\rho$$_1$ $U_1$$^2$ and Weber number We = $\rho$$_{g}$ $g^2$ $D_1$/$\sigma$ are selected as key parameters in atomization of shear coaxial spray from the fluid mechanics standpoint. It is revealed that SMD( $D_{32}$) varies inversely with gas/liquid momentum ratio(M), whereas Weber number(We) has little effect on the droplet sizes as gas velocities increase. It is found that gas/liquid momentum ratio is more dominant factor controlling the breakup and atomization process of shear coaxial spray. Finally, an empirical correlation between SMD and injection conditions(i.e. gas/liquid momentum ratio M and Weber number We) is proposed based on the experimental results.

  • PDF

The Effect of Impact Velocity on Droplet-wall Collision Heat Transfer Above the Leidenfrost Point Temperature (Leidenfrost 지점 온도 이상에서 액적-벽면 충돌 열전달에 대한 충돌 속도의 영향)

  • Park, Jun-seok;Kim, Hyungdae;Bae, Sung-won;Kim, Kyung Doo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.7
    • /
    • pp.567-578
    • /
    • 2015
  • Single droplet-wall collision heat transfer characteristics on a heated plate above Leidenfrost temperature were experimentally investigated considering the effects of impact velocity. The collision characteristics of the droplet impinged on the heated wall and the changes in temperature distribution were simultaneously measured using synchronized high-speed video and infrared cameras. The surface heat flux distribution was obtained by solving the three-dimensional transient heat conduction equation for the heated substrate using the measured surface temperature data as the boundary condition for the collision surface. As the normal impact velocity increased, heat transfer effectiveness increased because of an increase in the maximum spreading diameter and a decrease in the vapor film thickness between the droplet and heated wall. For We < 30, droplets stably rebounded from a heated wall without breakup. However, the droplets broke up into small droplets for We > 30. The tendency of the heat transfer to increase with increasing impact velocity was degraded by the transition from the rebounding region to the breakup region; this was resulted from the reduction in the effective heat transfer area enlargement due to the breakup phenomenon.