• Title/Summary/Keyword: 액적유량유속

Search Result 12, Processing Time 0.019 seconds

Characteristics of SMD and Volume Flux of Two-phase Jet Injected into Cross-flow with Various Gas-liquid Ratio and Reynolds Number (횡단 유동장의 기액비 및 레이놀즈수 변화에 따른 외부혼합형 이상유체 제트의 액적크기 및 체적유속 특성)

  • Kim, Jong-Hyun;Lee, Bong-Soo;Koo, Ja-Ye
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.75-81
    • /
    • 2009
  • A study was performed to investigate the characteristics of two-phase jet injected into subsonic cross-flow using the external mixed gas blast two-phase nozzle. The shadowgraph method was adopted for the cross-flow jet visualization and PDPA system was used to measure droplet size, velocity, and volume flux. The atomization of two-phase jet is initially determined according to gas to liquid mass flow-rate ratio and the Reynolds number of cross-flows. The highest penetration trajectories of two-phase jet injected into cross-flow are governed by the momentum ratio at subsonic cross-flow. As GLR of two-phase jet injected into cross-flow increases, the droplet size decreases and the distribution area of volume flux increases. The distribution of volume flux that influenced by the counter vortex pair at the downstream of cross-flow is symmetric in shape of horseshoe.

Correlations of Internal Nozzle Flow in Circular and Elliptical Nozzles with External Flow (원형 및 타원형 노즐 내부유동과 외부유동의 상관관계)

  • Ku, Kun-Woo;Hong, Jung-Goo;Park, Cheol-Won;Lee, Choong-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.325-333
    • /
    • 2012
  • An experimental study was carried out to determine the correlation between the internal flow in a circular nozzle and elliptical nozzles with the external flow. The flow rate, spray angle and drop size were measured under various conditions of the injection pressure. Numerical simulations were attempted to investigate the internal flow structure in the elliptical nozzles, because the experimental study was limited in its measurements of flow velocity and pressure distributions in the relatively small orifice. In the case of the elliptical nozzles, the disintegration characteristics of the liquid jet were significantly different from those of the circular nozzle. Surface breakup was observed at the jet issued from the elliptical nozzles with injection pressure. This is due to the internal flow structure, which is reattached to the orifice wall at the minor axis plane of the elliptical nozzle, unlike that observed with the circular nozzle.