• Title/Summary/Keyword: 액적방열기

Search Result 3, Processing Time 0.017 seconds

A Study on the Radiation Heat Transfer Characteristics of Liquid Droplet Radiator (액적방열기의 복사열전달 특성에 관한 연구)

  • 김금무;김용모;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.32-40
    • /
    • 1994
  • The radiative heat transfer analysis in particle layer has an inherent difficulty in treating the governing integro-differential equations, which are derived from the remote effects. Most of the existing analyses are limited to the one dimensional system, taking into account only absorption or isotropic scatting of solid particles. Fortunately, a new Monte Carlo Simulation method is recently developed to analyse multidimensional radiative heat transfer in particles with anisotropically scatting. By this method, the present study analyses the radiative heat transfer in dispersed particles through the numerous droplets in the liquid droplet radiator to develop a technique of liquid droplet radiator. Consequently, knows that the radiative heat flux in particle layer is influenced by exitinction coefficient, optical thickness and surface area of particles in the system.

  • PDF

A Study on the Heat Transfer Characteristics of Liquid Droplet Radiator for Air Conditioning (공기조화용 액적방열기의 열전달특성에 관한 연구)

  • 김금무;김춘식;김용모;김종헌
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.4
    • /
    • pp.17-26
    • /
    • 1995
  • In general existing air conditioning devices, which are carried out by convection heat transfer, are very popular compared with the radiation type air conditioning devices. But perconal convection tpe air conditioning units are unuseful air conditioning type because it handles amount of surrounded air to meet the temperature and humidity. In this view, this study is intended to develope personal dir conditioning units using a radiation type radiator. Liquid Droplet Radiator(L.P.R.) radiates the energy by means of thermal radiation. Radiative energy from L.P.R. is the infrared rays which heat the objects without lose of energy. It is a desirable heating method for the local area within the large room. In this study, the analysis uses the Monte Carlo methd to predict the temperature distribution in the droplet sheet and the net heat flux from the L.D.R.. And for this study and experiment was carried out to analyse the radiative and convective heat transfer characteristics in the L.D.R.. And the experiment was investigated the effects of inlet temperature, feed rate, optical thickness and droplet diameter on heat transfer characteristics of L.D.R.. The obtained results from the numerical and experimental studies of L.D.R. were as follows ; (1) The heat flux of L.D.R. was effected by extinction coefficient of droplet sheet, optical thickness and droplet temperature, surface area and emissivity of the droplet. And it was increased with the temperature, feed rate and optical thickness, on the other hand decreased with increasing of droplet diameter. (2) The experimental results for heat flux was ecalucted below 20% than that of the numerical solution by Monte Carlo method, but the tendency of the variation shows relatively good agreement.

  • PDF

A Study on the Radiative Heat Transfer Characteristics in the Fluidized Particles Layer (유동입자층에서의 복사열전달 특성에 관한 연구)

  • 김금무;김용모;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.4
    • /
    • pp.33-42
    • /
    • 1994
  • The radiative heat transfer analysis in the fluidized particles layer has important application in many technological areas such as combustion chambers at high pressure and temperature, plasma generators for nuclear fusion, MHD generator using pulverized coal and the liquid droplet radiator used to reject wasted heat from a power plant operating in space. To accurately model the radiation properties of the fluidized particles layer, it is necessary to know the radiation interchange factors of particles in each layer. But the solutions are usually not possible for the equations of radiative heat transfer because it has an inherent difficulty in treating the governing intergo- differential equations, which are derived from the remote effects of radiative heat transfer. In this study, the analysis uses the Monte Carlo simulation method with optical depth model to calculate the radiation interchange factors of particles in each layer with wall and with each other.

  • PDF