• Title/Summary/Keyword: 액면 변위

Search Result 2, Processing Time 0.012 seconds

A Study on Fluid Surface Movement Phenomena of Magnetic Fluids in a Container Subjected to a Horizontal Oscillation (수평진동이 있는 용기내 자성유체 액면 동요 현상에 관한 연구)

  • Kim, Dae-Wan;Park, Joung-Woo;Seo, Lee-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.5
    • /
    • pp.183-187
    • /
    • 2012
  • In this paper, fluid movement of magnetic fluid which has free surface is investigated in a container subjected to a horizontal oscillation. Here, the vertical magnetic field is applied from the bottom of this container. The experiment is performed on the magnetic fluid in a rectangular and a cylindrical container and the effects of magnetic force exerted on the magnetic fluid are investigated on the resonance frequency and liquid surface displacement. The increase of magnetic field affects on the maximum resonance point and the liquid surface displacement. In result, it changes the amplitude of the surface wave and the period of sloshing fluid movement.

Experimental Study on Sloshing Characteristics of a Ferrofluid in the Spherical Container (구형 용기 내 자성유체의 슬로싱 특성에 관한 실험적 연구)

  • Kim, Dae-Wan;Lee, Moo-Yeon;Seo, Lee-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.5
    • /
    • pp.173-177
    • /
    • 2013
  • This work describes the experimental investigations on sloshing characteristics of water and ferrofluid as working fluids in the spherical container with the horizontal oscillation motion and compared the results obtained by two working fluids. In order to Investigate the sloshing characteristics of the sphere container with the horizontal oscillation, experiments are performed with the magnetic intensities from 0 mT to 50 mT and horizontal oscillation motions from 5 mm to 15 mm. As results, Ferrofluid without magnetic field in the sphere container showed a similar liquid surface movement with water. The resonance point of the ferrofluid in the sphere container happened at higher value than that of the theoretical resonance frequency with the rise of the magnetic field. In addition, the sloshing characteristics of the ferrofluid in the sphere container can be controlled with the resonance frequency with the magnetic intensity and the liquid surface displacement could be also controlled.