• Title/Summary/Keyword: 앙상블 모형

Search Result 193, Processing Time 0.032 seconds

머신러닝 기반 KOSDAQ 시장의 관리종목 지정 예측 연구

  • Yun, Yang-Hyeon;Kim, Tae-Gyeong;Kim, Su-Yeong;Park, Yong-Gyun
    • 한국벤처창업학회:학술대회논문집
    • /
    • 2021.11a
    • /
    • pp.185-187
    • /
    • 2021
  • 관리종목 지정 제도는 상장 기업 내 기업의 부실화를 경고하여 기업에게는 회생 기회를 주고, 투자자들에게는 투자 위험을 경고하기 위한 시장규제 제도이다. 본 연구는 관리종목과 비관리종목의 기업의 재무 데이터를 표본으로 하여 관리종목 지정 예측에 대한 연구를 진행하였다. 분석에 쓰인 분석 방법은 로지스틱 회귀분석, 의사결정나무, 서포트 벡터 머신, 소프트 보팅, 랜덤 포레스트, LightGBM이며 분류 정확도가 82.73%인 LightGBM이 가장 우수한 예측 모형이었으며 분류 정확도가 가장 낮은 예측 모형은 정확도가 71.94%인 의사결정나무였다. 대체적으로 앙상블을 이용한 학습 모형이 단일 학습 모형보다 예측 성능이 높았다.

  • PDF

Improvement of streamflow forecast using a Bayesian inference approach (베이지안 기법을 통한 유량예측 정확도 개선)

  • Seo, Seung Beom;Kim, Young-Oh;Kang, Shin-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.303-303
    • /
    • 2018
  • 안정적인 수자원 운용을 위해서는 정확한 유량예측 기술이 필요하다. 본 연구에서는 유량예측 정확도의 개선을 위해 베이지안 추론(Bayesian inference) 기법과 앙상블 유량 예측(Ensemble Streamflow Prediction, ESP) 기법의 결합을 통한 새로운 유량예측 기법(Bayesian ESP)을 제안하였다. ESP를 통한 유량 예보 앙상블은 베이지안 추론의 사전정보로 활용되며, 관측 유량과 ESP 전망 결과의 선형관계를 통해 우도함수가 추정된다. 우도함수는 관측 유량이 존재하는 과거 기간에 대한 ESP를 수행한 후 예보 시점의 관측 유량(concurrent observed flow)과 선행 관측 유량(lagged observed flow)과의 다중선형회귀 모형을 통해 추정된다. 사전정보와 우도함수는 정규분포로 가정되며, 따라서 최종 유량예측인 사후정보 역시 정규분포함수로 산정되게 된다. Bayesian ESP은 ESP에서 발생하는 강우-유출모형 오차의 개선을 통해 수문예측의 정확도를 개선하게 되며 정규분포함수로 최종 결과가 산정되므로 확률예보 형태의 수문 전망도 가능하다. 본 기법을 전국 35개 댐 유역에 시범적용을 한 결과, 모든 유역에서 기존 ESP 기법 대비 수문예측 정확도의 개선을 가져왔으며, 우도함수 추정에 있어 선행 유량의 포함 여부가 수문 예측 정확도의 추가적인 개선을 가져왔다. 본 기법은 주간 예보부터 계절 예보까지 탄력적으로 구축이 가능하며 적용 결과 리드 타임이 길어질수록 예측 능력이 감소되었지만 전체 구간에 있어서 Bayesian ESP 기법이 가장 우수한 예측 정확도를 보여주었다.

  • PDF

Development of Poisson cluster generation model considering the climate change effects (기후변화 영향을 고려한 포아송 클러스터 가상강우생성모형 개발 및 검증)

  • Park, Hyunjin;Han, Jaemoon;Kim, Jongho;Kim, Dongkyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.189-189
    • /
    • 2015
  • 본 연구는 기후변화의 영향을 고려한 포아송 강우생성모형의 일종인 MBLRP(Modified Bartlett-Lewis Rectangular Pulse)를 개발하고, 대한민국 주요 도시에 대해 향후 100년간 강우의 변화를 살펴보았다. 기존 MBLRP 모형에서 기후변화에 따른 강우량 변화를 고려할 수 있도록 GCM 모형의 강우 자료를 활용하였고, GCM 모형으로부터 발생하는 불확실성을 고려하기 위해 IPCC의 RCP(Representative Concentration Pathways) 시나리오를 모의한 16개의 GCM 모형을 사용하였다. 2007년부터 2099년까지의 미래기간을 3개의 시 구간으로 구분하고, 16개 GCM 앙상블을 사용하여 미래기간 동안 대한민국 16개 도시에 대해 1000개의 샘플을 BWA 방법을 이용하여 생성하였다. 제어기간(1973-2005) 대비 미래기간(2007-2099)의 변화율을 나타내는 FOC(factor of change)와 온도의 연별 변화율을 나타내는 SF(scaling factor)의 개념을 결합하여 미래기간에 대한 CF(correction factor)를 산정하였다. 이때 CF는 16개 도시의 연 단위 강우량 변화 비율을 월별로 나타내며, 제어기간의 월 강우 관측치와 CF를 몬테카를로 모의를 실시하여 미래기간의 강우 시나리오를 산정한다. 이를 통해 월 평균 강우량 통계치를 연 단위로 얻을 수 있으며, 월 평균 강우량이 월 평균 분산, 무강우확률, 자기상관계수와 가지는 선형 관계를 통해 강우 통계치를 산출한다. 이와 같은 강우 통계치는 가상강우생성모형인 MBLRP 모형에 입력 자료로 활용되어 월 강우량을 시 단위의 강우 시계열 자료로 생성해낸다. 최종적으로 MBLRP 모형으로 산정된 시 단위 강우 시계열은 기후변화 영향을 고려한 GCMs 앙상블로 생성된 강우 시나리오를 기반으로 산출되기 때문에 향후 수자원 분석에 활용 가능할 것이라 기대된다.

  • PDF

Application of the Satellite Based Soil Moisture Data Assimilation Technique with Ensemble Kalman Filter in Korean Dam Basin (국내 주요 댐 유역에 대한 앙상블 칼만필터 기반 위성 토양수분 자료 동화 기법의 적용)

  • Lee, Jaehyeon;Kim, Dongkyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.301-301
    • /
    • 2018
  • 본 연구에서는 위성 기반 토양수분 자료를 수문모형에 자료동화하여 격자 단위에서 수문기상인자를 산출하고 그 정확성을 평가하였다. 수문모형으로는 Variable Infiltration Capacity(VIC) model을 선정하여 국내 주요 8개 댐 유역에 구축하였으며, 입력자료는 2008년 이후 10년간 자료를 수집하였으며, 2008-2012년의 관측 유량 자료를 사용하여 모형을 보정하였다. 모형의 보정을 위해 Isolated-Speciation Particle Swarm Optimization(ISPSO) 기법을 적용하여 매개변수를 추정하였고, 2013-2017년의 관측유량 자료를 통하여 모형의 성능을 검증하였다. VIC 모형에 자료 동화한 토양수분 자료는 AMSR2 위성 토양 수분 자료와 지상관측 토양수분 자료를 합성한 자료를 사용하였으며, 인공위성자료와 지상 자료를 조건부합성기법으로 합성한 토양수분자료는 각 격자별 토양수분을 더 정확히 산정하여 자료동화시 모형의 모의 정확도가 향상되는 경향을 보였다. 본 연구결과는 지상관측자료를 통해 보정된 위성관측 토양수분자료를 자료동화하여 수문모형의 정확도를 향상시키고, 미계측 유역에 대한 향상된 수문기상인자 정보를 제공함으로써 다양한 수문분석의 기초자료로 활용될 수 있을 것으로 기대된다.

  • PDF

Short-term streamflow Prediction Using ESP Method in Gumho River Basin (ESP 기법을 적용한 금호강유역의 단기 유량예측)

  • Choi, Hyun Gu;Lee, Eul Rae;Kang, Sin Uk;Lee, Sang Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.411-411
    • /
    • 2015
  • 유량예측의 가장 주된 목적은 가뭄과 홍수와 같은 수해방지를 위해 통합수자원관리를 수행하는데 있다. 이런 유량예측을 위해 다양한 기법들로 예측이 수행되고 있으며, 예측기간과 필요 정확도에 따라 초단기, 단기, 중 장기 예측 등으로 구분할 수 있다. 유량예측에 사용되는 기법들은 기후변화 시나리오와 같이 예측된 강우자료를 이용하여 유출량을 예측하는 방법이 있으며, 통계적인 방법으로 과거자료들을 활용하여 미래의 유량을 예측하는 방법이 있다. 본 연구에서는 ESP 기법을 이용하여 금호강 유역의 월 단위(30일) 유량을 예측하고자 한다. 앙상블 유량예측기법(ESP; Ensemble Streamflow Prediction)이란 현재의 유역상태를 초기조건으로 사용하고 과거의 온도나 강수 등의 시계열 앙상블을 강우-유출모형에 입력하여 유출량을 앙상블로 예측하는 기법이다. ESP는 결국 현재의 유역상태와 유역에서의 과거 강우 관측기록, 미래 강우예측에 대한 정보를 조합하여 그에 따른 유출 앙상블을 생산해내게 된다. 월 유량을 예측하기 위해서 금호강 유역의 1988년에서 2014년까지 27년간 대구, 영천, 포항 관측소의 기상자료를 수집하였으며, 금호강 표준유역에 해당하는 19개 유역으로 분할하여 모의에 이용하였다. 금호강 유역에 티센망을 적용하여 각 표준유역별로 강우량을 조합하여 2013년까지 모의에 적용하였으며, 이는 과거자료로 사용하였다. 유량예측에 사용되는 강우자료를 생성하기 위해서 26년간 일강우를 이용하였다. 예를 들어 2014년 12월을 예측한다면 11월까지 관측된 유역초기 조건을 가지는 수문모형의 12월 기상입력자료로써 현재 유역에서 발생 가능성이 있는 동일 유역의 과거 1988년부터 2013년까지의 12월 기상자료들을 사용하는 방법이다. 1988년부터 2013년까지 26개 12월 기상자료를 사용하므로 유량예측결과 또한 26개가 주워진다. 계산된 26개의 유량앙상블이 적용된 유역에서 12월에 발생 가능한 유출량의 모음이 된다. 시나리오결과를 수자원관리에 활용하기 위해서 초과확률로 분석하였으며, 이런 분석의 결과는 향후 가뭄과 홍수 같은 수해방지를 위해 수공구조물의 운영에도 활용할 수 있을 것으로 판단된다.

  • PDF

High resolution mapping of future forcasts for precipitation using AWE-GEN-2D over South Korea (AWE-GEN-2D를 이용한 국내 미래 강우의 고해상도 예측)

  • Doi, Manh Van;Kim, Jongho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.328-328
    • /
    • 2022
  • GCM은 기후 변수들의 미래 예측을 위해 사용되는 모형이지만, 공간에 대해 저해상도 형태로 결과가 제공되며, 공간적으로 변화하는 국지적 규모의 기후변수(즉, 강수)를 이해하기 위해서는 공간변동성을 고려할 필요가 있다. 강우의 예측은 강우의 생성과 소멸 과정을 추계학적으로 재현하는 일기생성 모형인 AWE-GEN을 이용하여 앙상블 시계열을 생성하고, 구름의 생성과 소멸 및 이동, wet/dry 셀들의 생성과 이동, 지형의 국지적 특성 등을 반영한 시공간 변동 앙상블 시계열은 AWE-GEN-2D 모형을 이용하여 생성하였으며, 국토의 대부분이 산악지형으로 구성된 국내에 적용하여 그 적용성을 검토하였다. 생성된 시공간 격자 기반의 일기생성 시계열은 PRISM을 사용하여 매핑된 강수량의 공간 분포와 비교, 검증하였으며, 측정되지 않은 관측소 또는 원격 지역에 대한 평균 및 극한 강수량의 미래 예측 추정에 사용되었다. 또한, 평균 및 극한 강우의 공간 분포에 대한 미래 변화는 다양한 기간, 이산화탄소 배출 시나리오 등의 영향에서도 고려된다. 본 연구의 결과는 수자원 관리 및 재난 관리 정책을 수립하고 서비스를 제공하기 위한 기본 자료로 사용될 수 있다.

  • PDF

Prediction of Probabilistic Meteorological Drought Using Bayesian Network (베이지안 네트워크를 활용한 기상학적 가뭄의 확률론적 예측)

  • Shin, Ji Yae;Kwon, Hyun-Han;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.20-20
    • /
    • 2015
  • 최근 기후변화의 영향으로 전 세계적으로 홍수와 가뭄의 발생빈도가 증가하고 있다. 특히, 가뭄은 우리나라에서 겨울과 봄철을 중심으로 매년 발생되고 있다. 가뭄의 정확한 발생을 판단하기는 어려우나, 가뭄이 발생되면 그 진행속도는 홍수보다 느리기 때문에 초기에 가뭄의 발생가능성을 예측한다면 가뭄에 대한 피해를 줄일 수 있다. 따라서 최근 가뭄 예측에 대한 다양한 연구가 이루어지고 있다. 본 연구에서는 가뭄발생의 불확실성을 내포하기 위하여 Bayesian Network (BN) 모형과 SPI의 자기상관성을 바탕으로 가까운 미래의 가뭄 발생확률을 예측하는 방법을 제안하였다. BN은 변수들 간의 인과관계를 확률적으로 나타낼 수 있는 네트워크 모형으로, 자연현상에 대한 위험도 분석 및 의학 분야에서 질병추정을 위한 모형으로 활용되고 있다. 본 연구에서는 가까운 미래의 가뭄 예측을 위하여 APEC 기후센터(APEC Climate Center, APCC)에서 제공하는 다중모형앙상블(Multi-model Ensemble, MME) 강우예측 결과로 도출한 미래 SPI 및 과거 강우량 자료로 구축한 SPI를 부모노드로, 예측 SPI를 자식노드로 BN을 구축하였다. BN의 각각의 노드를 Gaussian 확률분포모형으로 가정한 뒤, Likelihood weighting 방법으로 주변사후분포확률(Marginal posterior distribution)을 추정하여 미래의 SPI의 발생확률을 계산하였다. 2008년부터 2013년의 BN 가뭄 예측값과 MME 강우예측 결과로 도출한 SPI를 실제 관측 강우량으로 산정한 SPI와 비교하였으며, BN이 실제 관측결과에 가까운 결과가 도출되었다. 본 연구에서는 BN을 활용하여 가까운 미래의 가뭄 발생가능성을 확률적으로 나타낼 수 있는 방법을 제시하였으며, 그 결과 가뭄상태별 가뭄 발생확률이 산정되었다.

  • PDF

Availability of AWS data from KMA for real-time river flow forecast (실시간 하천유량 예측을 위한 기상청 AWS 자료의 활용성 평가)

  • Lee, Byong-Ju;Chang, Ki-Ho;Choi, Young-Jean
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.131-131
    • /
    • 2011
  • 기후변화로 인한 기상이변 현상이 빈번하게 발생하면서 홍수와 같은 자연재해의 피해규모가 증가하고 있다. 이를 극복하기 위해 최근에는 구조적 대책뿐만 아니라 홍수예측시스템과 같은 비구조적 대책에도 많은 관심과 연구가 이루어지고 있다. 통상 홍수예측을 위해서는 예측강우의 정확도가 중요하게 부각되지만 중규모 이상의 유역에서는 수 시간의 지체시간 효과로 인해 AWS 실황강우만으로도 어느정도 선행시간에 대해서 하천유량예측이 가능하다고 할 수 있다. 본 연구에서는 기상청 AWS 실황강우를 이용하여 하천유량을 예측할 경우 어느정도 선행시간과 정확도를 확보할 수 있는지에 대해서 분석하고자 한다. 분석을 위한 시단위 강우자료와 기상자료는 각각 AWS와 ASOS 자료를 이용하였다. 또한 하천유량 모의를 위한 강우-유출모형으로는 SURF 모델(Sejong University River Forecast Model)을 이용하였다. 이 모형은 저류함수모형 기반의 연속형 강우-유출모형으로 미래에 대한 유출모의결과의 정확도를 향상시키기 위해 앙상블 칼만필터링 기법을 연계한 모형이다. 그림 1은 충주댐유역에 대해서 2009.7.8~17일(240시간)에 대해서 관측유량 자료동화 전후의 결과를 나타낸 것이다. 현시점을 100, 105, 110, 115시간으로 가정하고 미래기간에 대해서는 관측강우를 0으로 가정했을 때 대략 첨두유량 발생 5시간 전에 예측된 모의유량이 관측유량과 거의 일치함을 확인할 수 있다. 따라서 실황강우와 관측유량 자료동화 기법을 연계할 경우 수 시간의 선행시간에 대해서 유량예측이 가능한 것으로 판단된다.

  • PDF

Uncertainty Analysis for the Probabilistic Flood Forecasting (확률론적 홍수예측을 위한 불확실성 분석)

  • Lee, Kyung-Tae;Kim, Young-Oh;Kang, Tae-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.71-71
    • /
    • 2012
  • 현재 전 세계적으로 극한강우의 발생빈도가 점차 높아지고 있으며 홍수량 또한 강도가 커지고 있는 것이 현실이다. 하지만 과거의 홍수발생 빈도에 따라 설계된 홍수방어시설들이 점차 한계를 보이고 있으므로 이를 대비하기위한 구조적 대책뿐만 아니라 홍수피해 발생 가능지역에 사전 예경보를 시행하는 비구조적 대책마련 또한 필요하다. 기존의 홍수예측은 확정적인 하나의 유량예측값만을 제공함으로써 신속하고 편리하였지만 이에 대한 불확실성이 큰 경우 예상치 못한 큰 인적 물적 피해를 가져올 수 있다. 이처럼 확률론적 홍수예측의 필요성이 대두되어 지면서 유럽이나 미국등 선진국에서는 EFFS(European Flood Forecasting System)과 NWSRFS(National Water Service River Forecast System)같이 이미 확률론적 홍수예측에 대한 연구 및 기술개발이 활발하게 진행되어지고 있다. 하지만 홍수예측의 확률론적 접근에 있어서는 많은 불확실성들이 내포되어 있으므로 예측시스템에서 생성된 앙상블 유량예측 결과의 신뢰도 분석과 올바른 불확실성 정보의 제공이 필요하다. 본 연구는 확률론적 홍수예측 방법을 국내에 적용시켜서 기상청의 예측시스템 KLAPS(Korea Local Analysis and Prediction System), MAPLE(McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation), UM(Unified Model) 그리고 MOGREPS(Met Office Global Regional Ensemble Prediction System)으로부터 생성된 기상앙상블을 현재 국토해양부 홍수통제소에서 사용하고 있는 강우-유출모형인 저류함수모형(Storage Function Method)의 입력 자료로 사용한다. 확률론적 홍수예측에서 오는 불확실성을 분석하기 위해서 첫 번째로 제공되는 기상예측 시스템의 시 공간적 스케일 및 대상유역의 공간특성에 따라 어떠한 형태로 전파되어지는지를 분석하였다. 두 번째는 각각의 예측시스템들이 선행기간(Lead time)에 따라 불확실성의 특성이 어떻게 나타나게 되는지를 확인하였다. 이러한 불확실성의 특성을 정확하게 파악하게 된다면 예측에 있어서 현재 갖고 있는 문제점들로부터 개선해 나가야 할 방향을 제시해주어 향후연구에 유용하게 활용될 수 있을 것이다.

  • PDF

Performance Characteristics of an Ensemble Machine Learning Model for Turbidity Prediction With Improved Data Imbalance (데이터 불균형 개선에 따른 탁도 예측 앙상블 머신러닝 모형의 성능 특성)

  • HyunSeok Yang;Jungsu Park
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.107-115
    • /
    • 2023
  • High turbidity in source water can have adverse effects on water treatment plant operations and aquatic ecosystems, necessitating turbidity management. Consequently, research aimed at predicting river turbidity continues. This study developed a multi-class classification model for prediction of turbidity using LightGBM (Light Gradient Boosting Machine), a representative ensemble machine learning algorithm. The model utilized data that was classified into four classes ranging from 1 to 4 based on turbidity, from low to high. The number of input data points used for analysis varied among classes, with 945, 763, 95, and 25 data points for classes 1 to 4, respectively. The developed model exhibited precisions of 0.85, 0.71, 0.26, and 0.30, as well as recalls of 0.82, 0.76, 0.19, and 0.60 for classes 1 to 4, respectively. The model tended to perform less effectively in the minority classes due to the limited data available for these classes. To address data imbalance, the SMOTE (Synthetic Minority Over-sampling Technique) algorithm was applied, resulting in improved model performance. For classes 1 to 4, the Precision and Recall of the improved model were 0.88, 0.71, 0.26, 0.25 and 0.79, 0.76, 0.38, 0.60, respectively. This demonstrated that alleviating data imbalance led to a significant enhancement in Recall of the model. Furthermore, to analyze the impact of differences in input data composition addressing the input data imbalance, input data was constructed with various ratios for each class, and the model performances were compared. The results indicate that an appropriate composition ratio for model input data improves the performance of the machine learning model.