As a preliminary effort to establish a data assimilative ocean forecasting system, we reviewed the theory of the Ensemble Kamlan Filter (EnKF) and developed practical techniques to apply the EnKF algorithm in a real ocean circulation modeling system. To verify the performance of the developed EnKF algorithm, a wind-driven double gyre was established in a rectangular ocean using the Regional Ocean Modeling System (ROMS) and the EnKF algorithm was implemented. In the ideal ocean, sea surface temperature and sea surface height were assimilated. The results showed that the multivariate background error covariance is useful in the EnKF system. We also tested the sensitivity of the EnKF algorithm to the localization and inflation of the background error covariance and the number of ensemble members. In the sensitivity tests, the ensemble spread as well as the root-mean square (RMS) error of the ensemble mean was assessed. The EnKF produces the optimal solution as the ensemble spread approaches the RMS error of the ensemble mean because the ensembles are well distributed so that they may include the true state. The localization and inflation of the background error covariance increased the ensemble spread while building up well-distributed ensembles. Without the localization of the background error covariance, the ensemble spread tended to decrease continuously over time. In addition, the ensemble spread is proportional to the number of ensemble members. However, it is difficult to increase the ensemble members because of the computational cost.
Hydrologic models can be classified into two types: those for understanding physical processes and those for predicting hydrologic quantities. This study deals with how to use the model to predict today's stream flow based on the system's knowledge of yesterday's state and the model parameters. In this regard, for the model to generate accurate predictions, the uncertainty of the parameters and appropriate estimates of the state variables are required. In this study, a relatively simple hydrologic partitioning model is proposed that can explicitly implement the hydrologic partitioning process, and the posterior distribution of the parameters of the proposed model is estimated using the Markov chain Monte Carlo approach. Further, the application method of the ensemble Kalman filter is proposed for updating the normalized soil moisture, which is the state variable of the model, by linking the information on the posterior distribution of the parameters and by assimilating the observed steam flow data. The stochastically and recursively estimated stream flows using the data assimilation technique revealed better representation of the observed data than the stream flows predicted using the deterministic model. Therefore, the ensemble Kalman filter in conjunction with the Markov chain Monte Carlo approach could be a reliable and effective method for forecasting daily stream flow, and it could also be a suitable method for routinely updating and monitoring the watershed-averaged soil moisture.
일반적으로 기후변화 연구에서는 미래 기후변화 전망에 존재하는 불확실성을 고려하기 위해 다양한 Global Circulation Model (GCM) 시나리오를 고려하는 앙상블기법을 사용한다. 하지만 모든 GCM 시나리오들을 전부 사용하는 것은 많은 계산시간과 노력을 요구하기 때문에 비효율 적이다. 따라서 최소한의 시나리오로 최대한의 기후변화 변동성을 포함할 수 있는 대표 시나리오 선정 및 적용이 필요하다. 본 연구에서는 군집분석 기법 중에 하나인 KKZ 알고리즘을 활용하여 지역 수문 영향분석을 위한 대표 시나리오를 선정하였다. 먼저 27개 ETCCDI 기상변수들로부터 대표 기상변수들을 선정하고 미래 기간에 대한 상대변화를 90%이상 포함시키는 대표 시나리오를 선정하였다. KKZ 알고리즘을 활용할 경우 전체 26개 GCM에 대해 우선순위별로 시나리오를 하나씩 증가시켜 선정하기 때문에, 시나리오를 하나씩 증가시킬 때 마다 미래 기후변동성이 어느 정도 표현되는지 분석하였다. 그리고 선정된 GCM 시나리오들을 금강유역을 대상으로 수문 모형에 입력하여 미래 수문영향 분석을 실시하였다. 이를 통해 대표 시나리오를 통해 전망한 미래 수문변화량이 전체 상대변화량 대비 어느 정도의 변화량을 포함시킬 수 있는지 분석하였다. 그리고 홍수 및 가뭄과 관계된 기상변수 그룹을 각각 선정 한 후 이를 바탕으로 새롭게 대표 시나리오들을 선정하였다. 이를 바탕으로 수문 영향분석을 실시하여 각각의 시나리오들이 홍수 및 가뭄전망 상대변화량을 얼마나 잘 포함시킬 수 있는지도 분석하였다. 이와 같이, 본 연구는 적은 수의 대표 시나리오의 선정을 통해 미래 기후변화 변동성을 최대한 포함시킬 수 있음으로서 불필요한 수문모의 시간을 절약할 수 있음을 보여주었다.
우리나라에서 발생하는 대규모 자연재해의 상당부분은 강우에 의한 홍수피해이다. 최근 이러한 홍수피해는 기후변화와 더불어 극한강우 현상의 빈발에 의한 새로운 재해양상으로 전개되고 있으며, 이에 따라 정부에서도 재해발생시 원상복구의 개념이 아닌 항구복구의 개념으로 복구사업을 수행하고 있다. 그러나 설계에 기후변화에 대한 영향을 반영하고 있지 못하기 때문에 기후변화에 의하여 미래에 발생할 극한강우로 반복적인 피해가 예상되고 있으므로 기존의 방재성능목표 강우량의 설정 방법에 대한 개선이 필요하다. 전 세계적으로 이러한 기후변화에 의한 현상을 모의하기 위한 연구로 전지구기후모델(Global Climate Model, 이하 GCM)과 지역기후모델(Reginal Climate Model, 이하 RCM)을 사용하고 있다.우리나라 기상청에서도 CMIP5 국제사업의 표준 실험체계를 통해 전지구 기후변화 시나리오 산출을 위해서 영국 기상청 해들리센터의 GCM인 HadGEM2-AO를 도입하였다. 또한 한반도 기후변화 시나리오를 산출하기 위해 HadGEM3-RA 모형을 이용하여 전지구 기후변화 시나리오를 역학적으로 상세화하고 이를 한반도에 대해 12.5km 공간 해상도로 일 자료를 제공하고 있다. 하지만 유역규모 혹은 지점규모에서 사용하기 위해서는 이러한 일자료의 시 공간적인 상세화기법이 요구된다. 본 연구에서는 기후변화를 고려한 방재성능목표 강우량 개선 방향을 제안하기 위해 다양한 연구단에서 도출된 상세화 결과를 수집하고 비교분석을 통해 기후변화를 고려하고자 하였다. 다양한 연구기관에서 생산된 미래 확률 전망을 살펴본 결과, 동일한 GCM자료를 사용하더라도 상세화 방법론에 따라 서로 다른 결과가 도출되는 것을 확인하였다. 미래 예측의 불확실성을 고려하면 특정한 방법론이 우수하다고 평가하기는 어려움에 따라 앙상블 평균을 활용한 개선방향을 제안한다. 본 연구의 결과는 전국 지자체의 강우특성만을 고려한 것으로, 연안지역의 경우 해수면 상승을 고려하여 추가적인 대책이 필요할 것으로 판단된다.
본 연구에서는 이내비게이션 시스템이 장착된 연안 및 국제여객선을 활용하여 효율적으로 해양환경관측을 실시하고 관측된 해양 환경 빅데이터를 분석할 수 있는 방안을 제시하였다. 먼저, 이내비게이션 시스템과 운영 개념을 소개하고, 우리나라 연안의 해양환경모니터링 현황을 개괄한 후, 기존 관측망의 단점을 보완하고 장점을 강화할 수 있도록 이내비게이션을 활용한 해양환경모니터링 관측방법과 관측요소(기상, 물성, 유속 및 수심)를 제안하였다. 또한, 이내비게이션 시스템이 장착된 여객선에서 관측한 자료를 실시간으로 분석하는 시공간 혼합효과모형, 앙상블기법 및 무요소기법과 같은 해양빅데이터 분석 기법을 제안하였다. 본 연구는 연안 선박과 소형어선에 중점을 둔 한국형 이내비게이션 추진에 도움이 될 것으로 기대한다.
정보통신기술의 발달과 더불어 게임 산업이 성장하면서 유저의 게임데이터는 다양한 플레이 및 옵션에 따라 초 단위로 기록되며 방대한 양의 게임데이터를 빅데이터 기반으로 분석할 수 있게 되었다. 비즈니스와 결합하여 다양한 분야에서 수익창출을 위한 새로운 가치를 발견하는 것에 빅데이터를 활용하고 있지만, 게임 산업에서의 빅데이터 활용은 미흡한 실정이다. 본 연구에서는 리그오브레전드의 게임데이터를 이용하여 라인 별 승패예측모형을 구축한 뒤 세분화 된 라인의 특성을 반영한 변수 중요도를 도출하여 일반 게임유저가 승률을 올리기 위해 전적검색사이트를 이용하여 사전에 팀 구성원에 대한 정보를 제공받을 수 있도록 한다.
본 연구는 최근 가공 불량 예측 방법으로 주목받고 있는 머신러닝 기반의 모델을 이용하여 CNC 가공 불량 발생의 실시간 예측을 위한 분석 프레임워크를 제안하고, 해당 프레임워크에 기반하여 XGBoost, CatBoost, LightGBM, 랜덤 포레스트, Extra Trees, SVM, k-최근접 이웃, 로지스틱 회귀 모델을 CNC 설비에 기본 내장된 센서들로부터 추출된 데이터에 적용 및 분석하였다. 분석 결과 XGBoost, CatBoost, LightGBM 모델이 동일하게 가장 우수한 정확도, 정밀도, 재현율, F1 점수, AUC 값을 보였으며, 이 중 LightGBM 모델이 소요 실행 시간이 가장 짧은 것으로 나타났다. 이러한 짧은 소요 실행 시간은 실 시스템 구축 비용 절감, 빠른 불량 예측에 따른 CNC 장비 파손 확률 감소, 전체적인 CNC 활용률 증가 등의 실무적 장점을 가지므로 LightGBM 모델이 기본 센서들만 설치된 CNC 설비에 적용 시 가공 불량 예측에 가장 효과적으로 판단된다. 또한 소요 실행 시간 및 컴퓨팅 파워의 제약이 없는 상황에서는 LightGBM, Extra Trees, k-최근접 이웃, 로지스틱 회귀 모형으로 구성된 앙상블 모델을 적용할 경우 분류 성능이 최대화됨을 확인하였다.
이 연구에서는 침수식생 조건에서 식생 형태 별 frontal area, solid volume fraction이 유속 분포에 미치는 영향을 분석하고, 흐름측정결과로부터 식생 형태에 따른 난류흐름특성을 분석하기 위하여 수행 되었다. 식생흐름 구현을 위하여 5 cm의 간격으로 총 257개의 모형식생을 전체 영역에 배치했다. 유속측정위치는 수위측정결과에 따라 흐름이 안정화되는 구간에서 연직방향으로 17개 지점에서 측정한 후 앙상블 평균하여 분석했다. Branch의 유무에 따라 Type I과 II로 구분하여 각 식생에 대해 유속의 연직분포를 측정한 결과, Branch가 없는 Type I에서는 유속이 지속적으로 감소하는 반면, Type 2에서는 Frontal area가 급격히 증가하는 Branch 구간에서 유속이 급격히 감소한 후 Trunk 구간에서 유속이 다시 증가하는 변화를 보였다. Velocity Spectrum 분석 결과, 모든 지점에 대해 평균한 결과 고주파수 영역에서 -5/3 law를 따르는 것으로 나타나 전체 영역에서 isotropic & homogeneous 난류흐름이 발생함을 확인했다. 난류흐름특성 계산결과, Turbulent kinetic energy(k)를 mean kinetic energy(K)로 무차원화하여 연직분포를 비교했을 때 -k/K는 모두 식생에 근접하며 증가했다. Shear production(Ps)의 계산결과로부터 전단흐름에 의한 난류운동에너지 생성영향분석결과, Type I과 II가 식생경계의 mixing interface 부근에서 급격히 증가하는 분포를 보였으며, 이는 시간평균유속분포에서 분석한 결과와 일치한다. Wake production(Pw)의 연직분포계산결과, Ps와 유사하게 식생경계 부근에서 상승하는 결과가 나타났으며, 이는 식생경계에서 발생하는 Large scale eddy로 인해 발생함을 알 수 있다. 마지막으로 x-방향 난류확산계수로부터 scale factor(αx)의 연직분포를 계산한 결과, 식생경계부근의 mixing interface에서 증가한 후 식생영역 내에서 감소하는 분포를 나타냈다. z-방향 난류확산 계수의 scale factor(αz)는 αx에 비해 작게 계산되었다. 이러한 결과는 오염물질의 연직확산이 식생경계에서 증가한 후 식생 내부에서 감소하여 오염물질, 부유사 등의 축적이 이뤄질 것으로 예상된다. 이는 가지로 인해 식생저항이 증가할 경우 용존성 물질의 혼합이 감소하여 식생의 저장대 효과가 증가함을 의미한다.
한반도 기후변화평가보고서에 의하면 집중호우의 빈도와 강도는 1990년대 후반부터 꾸준히 증가하는 경향을 보였고 2020년의 홍수는 예견된 것으로 우려가 현실화 된 사건이라 볼 수 있다. 2020년 홍수에서 알 수 있듯이 강수량과 하천의 유량을 직접 담아내는 국내 댐 시설의 운영은 증가하는 기후변화의 위험에 더욱 중요한 역할을 할 것으로 보인다. 단일 목적으로 건설된 발전용댐의 경우도 다목적댐, 홍수조절댐 등 다양한 수자원시설과 동일한 수계 내에 배치되어 있기 때문에 기후변화 시나리오에 따라 발전용댐의 운영도 변화되어야 할 것이다. 2020년 발전용댐의 다목적 활용 협약 등의 여건 변화는 수자원 활용 측면에서 발전용댐의 역할이 기대되고 있다. 따라서 본 연구에서는 기후변화 시나리오에 따른 발전용댐의 운영안을 회복탄력성 관점에서 제시하고자 한다. 기후변화는 CMIP6 데이터베이스에서 제공하는 18개의 GCMs의 결과를 고려하여 기후변화를 고려하였으며 3개의 미래구간에 대해 100개의 앙상블을 생성하였다. 해당 자료는 LSTM 모형으로 기반으로 댐 유입량을 예측하기 위해 사용되었다. 유입량 예측 결과 0.77~0.89의 NSE 값을 갖는 것으로 평가되었다. 최종적으로 기후변화 시나리오 따라 증가하는 예측된 유입량에 맞춰 댐 모의운영을 수행하였고 회복탄력성, 발전량, 홍수위험 등을 평가하였다. 그 결과 전력생산 관점의 회복탄력성을 유지하는 운영안을 제시하였고, 이를 통해 전력생산량을 증가시키면서 홍수조절 및 용수공급에 기여함을 확인하였다. 향후 방류량에 따라 하류의 구체적인 치수위험평가가 동시에 이뤄진다면 기후변화 시나리오별 발전용댐의 최적 운영기준을 제시할 수 있을 것으로 기대된다.
2020년 발생한 코로나19는 전세계적으로 지속적인 피해를 미쳤으며, 특히 하늘길 봉쇄 및 외출 자제로 인해 스마트 관광산업은 경제적 직격탄을 맞았다. 해외여행과 국내여행이 크게 감소된 상황에서 계속되는 적자로 인해 휴업과 폐업을 하는 관광호텔들이 늘어나고 있는 상황이다. 따라서 본 연구에서는 행정안전부의 인허가 데이터를 수집한 후 시각화하여 관광숙박업의 운영 현황을 파악하였다. 머신러닝 분류 알고리즘을 적용하여 관광호텔의 생존 예측 모델을 구현하였고 앙상블 알고리즘을 활용하여 예측 모델의 성능을 최적화하였으며 5-Fold 교차검증으로 모델의 성능을 평가하였다. 관광호텔의 생존율이 다소 감소할 것으로 예측되었으나 실제 생존율을 코로나19 이전과 큰 차이를 보이지 않는 것으로 분석되었다. 본 논문의 호텔업 영업 상태 예측을 통해 관광숙박업 전체의 운영 가능성 및 발전 동향을 파악할 수 있는 근거로 활용할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.