The number of freshmen at universities is decreasing due to the recent decline in the school-age population, and the survival of many universities is threatened. To overcome this situation, universities are seeking ways to use big data within the school to improve the quality of education. A study on the prediction of dropout students is a representative case of using big data in universities. The dropout prediction can prepare a systematic management plan by identifying students who will drop out of school due to reasons such as dropout or expulsion. In the case of actual on-campus data, a large number of missing values are included because it is collected and managed by various departments. For this reason, it is necessary to construct a model by effectively reflecting the missing values. In this study, we propose a university student dropout prediction model based on eXtreme Gradient Boost that can be applied to data with many missing values and shows high performance. In order to examine the practical applicability of the proposed model, an experiment was performed using data from C University in Chungbuk. As a result of the experiment, the prediction performance of the proposed model was found to be excellent. The management strategy of dropout students can be established through the prediction results of the model proposed in this paper.
수재해 방지를 위한 수문해석 모형에서 정량적인 강수자료의 역할은 매우 중요하다. 최근에는 기후변화로 인한 국지성 집중호우 등 돌발 강수의 빈도가 증가하고 있어 지상에 설치된 우량계보다 시·공간적 변동성을 반영할 수 있는 격자형 위성 강수자료의 활용성이 커지고 있다. 하지만 위성강수자료는 관측 시에 대기의 상태 또는 위성별 관측 센서, 공간적 스케일 차이 등에 의해 실제 내린 강수와의 편의가 존재한다. 이를 해결하기 위해 지점 강수자료를 이용한 통계적, 지형정보학적 상세화 기법이 적용되고 있으나, 대부분의 연구에서 강수자료의 양적 보정만을 목적으로 수행되었다. 본 연구에서는 머신러닝 기반의 랜덤포레스트(random forest) 모델을 사용하여 다중위성 강수자료(CHIRPSv2, CMORPH, GSMaP, TRMMv7)와 기상청에서 제공하는 AWS, ASOS 지점 강수를 사용하여 최적 위성강수자료를 생성 후 각 위성강수자료와 비교·분석하였다. 2003년에서 2017년까지의 각 위성강수자료를 수집하여 같은 공간 스케일로 전처리한 뒤 모델에 입력하였으며 AWS 강수자료는 훈련, ASOS 강수자료는 검증에 이용되었다. 그 결과, 생성된 최적 위성강수자료는 각 위성강수자료보다 지점강수와의 편의가 줄고 높은 상관관계를 나타내고 있다. 이는 앞으로 사용될 위성강수자료의 시·공간적 보정 및 단기예측에 활용할 수 있으며, 특히 원격탐사자료의 의존도가 높은 미계측 대유역 수문해석에 정량적인 강수자료를 제공할 수 있을 것으로 판단된다.
성과 지표로서의 전방적 정확도는 정답인 경우 1, 오답인 경우 0으로 계사하는 이른바 모듈화된 정확도를 충분히 고려하지 못한다. 이에 문제의 특징에 따라 모듈화 정확도에 맞는 판별 규칙을 최적화 하는 보다 스마트한 판별 알고리즘이 필요하다고 볼 수 있다. 이에 따라, 스마트한 알고리즘은 문제 유형에 따라 보다 일반화되고 실제 성능의 왜곡을 야기할 수 있는 이산화에 제약되지 않아야 한다. 따라서 본 논문의 목적인 모듈화 정확도를 개선하는 새로운 부스팅 알고리즘을 제안하는 것이다. 이에 일반화를 도모하고 문제 영역의 특성에 맞게 판별화 모형을 선정하기 위해 스마트함을 고려한 모형 선정 알고리즘을 개발하였다. 제안된 방법의 성능을 검증하기 위해 실제로 47,000여건의 특허건을 가지고 실제 실용화 가능성을 판별하는 실험을 수행하였다.
항공교통흐름관리의 목적은 공항 및 공역의 수용량 안에서 항공교통 수요를 만족시키는 것이다. 그러므로 수용량을 정확하게 예측하는 것은 항공교통흐름관리의 성능에 많은 영향을 준다. 본 논문은 특정 공항의 예상 출·도착 수요, 시각, 기상 및 실제 처리한 항공기 대수 등 과거의 항공기운항 데이터를 기계학습의 한 방법론인 부스팅 앙상블 알고리즘으로 학습하여 시간당 출·도착하는 항공기의 수를 예측하는 회귀모형을 개발하였다. 기계학습을 통해 도출된 모델은 실제 인천국제공항의 출·도착 항공편 데이터를 이용해 검증하였으며, 결정계수가 0.95 이상으로 나타났다. 이 모델을 이용하여 접근관제구역의 수용량을 간접적으로 예측할 수 있었다.
2020년 8월 섬진강 유역에서 100년 빈도 이상의 대홍수가 발생함에 따라 제방이 붕괴되거나 하천 범람이 발생하는 피해가 발생하였다. 8월 홍수를 대상으로 섬진강 본류 남원(신덕리) 수위국에서 기존의 수위-유량 관계 곡선식(이하 Rating curve)의 최대 적용 가능 수위는 2.53m 이지만, 해당 기간 첨두 수위는 10m 이상을 기록하였다. 이러한 대홍수의 경우 기왕의 관측데이터가 없을 뿐만 아니라 기존의 Rating curve를 외삽하여 활용하는 것에도 한계가 있어 간접적으로 유량을 산정할 수 있는 기법이 필요하다. 본 연구에서는 이와 같이 유량측정이 어려운 지점을 대상으로 주어진 유량에 대하여 수위를 재현할 수 있는 K-water에서 개발된 K-River모형(1차원 하천수리해석모형)과 Monte Carlo 시뮬레이션 기법을 활용하여 간접적으로 유량을 산정할 수 있는 기법을 개발하였다. 개발된 방법론은 고수위 구간에 대한 Rating curve의 불확실성으로 인하여 본류와 지류의 유입량 추정이 어려웠던 섬진강 요천 합류부에 적용하였다. 대상구간은 본류(섬진강) 26km 및 지류(요천) 15km로 구성되어 있으며, 본류와 지류의 상류인 수위국 남원(신덕리) 관측소와 남원(동림교) 관측소에는 각각 기존의 Rating curve가 존재한다. 불확실성이 높은 Rating curve의 고수위 구간에 대한 매개변수를 조정하여 다수의 Rating curve를 생성하고, 이를 기반으로 관측수위를 다수의 상류 시계열 유량자료(경계조건)로 환산하였다. 다음으로 이 유량자료를 기반으로 앙상블 모의를 수행 후 대상구간의 중간지점에 위치한 수위국(고달(고달교) 관측소, 송동(요천대교) 관측소, 곡성(금곡교) 관측소)에서 수위재현성(NSE, RSR등 활용)을 평가하여 최적 샘플 추출을 추출하였다. 추출된 샘플로부터 상류 경계지점의 적정 Rating curve 선정과 각 지점에서의 시계열 수위 및 유량을 역으로 추정하였다. 이를 통해 실제 유량측정결과 없이도 간접적으로 신뢰도 높은 유량 자료를 확보할 수 있음을 확인할 수 있었으며, 향후 수자원의 효율적 관리 및 홍수관리를 위하여 효율적으로 활용이 가능할 것으로 생각된다.
본 연구는 부도위험 예측을 위해 K-IFRS가 본격적으로 적용된 2012년부터 2018년까지의 기업데이터를 이용한다. 부도위험의 학습을 위해, 기존의 대부분 선행연구들이 부도발생 여부를 기준으로 사용했던 것과 다르게, 본 연구에서는 머튼 모형을 토대로 각 기업의 시가총액과 주가 변동성을 이용하여 부도위험을 산정했으며, 이를 통해 기존 방법론의 한계로 지적되어오던 부도사건 희소성에 따른 데이터 불균형 문제와 정상기업 내에서 존재하는 부도위험 차이 반영 문제를 해소할 수 있도록 하였다. 또한, 시장의 평가가 반영된 시가총액 및 주가 변동성을 기반으로 부도위험을 도출하되, 부도위험과 매칭될 입력데이터로는 비상장 기업에서 활용될 수 있는 기업 정보만을 활용하여 학습을 수행함으로써, 포스트 팬데믹 시대에서 주가 정보가 존재하지 않는 비상장 기업에게도 시장의 판단을 모사하여 부도위험을 적절하게 도출할 수 있도록 하였다. 기업의 부도위험 정보가 시장에서 매우 광범위하게 활용되고 있고, 부도위험 차이에 대한 민감도가 높다는 점에서 부도위험 산출 시 안정적이고 신뢰성 높은 평가방법론이 요구된다. 최근 머신러닝을 활용하여 기업의 부도위험을 예측하는 연구가 활발하게 이루어지고 있으나, 대부분 단일 모델을 기반으로 예측을 수행한다는 점에서 필연적인 모델 편향 문제가 존재하고, 이는 실무에서 활용하기 어려운 요인으로 작용하고 있다. 이에, 본 연구에서는 다양한 머신러닝 모델을 서브모델로 하는 스태킹 앙상블 기법을 활용하여 개별 모델이 갖는 편향을 경감시킬 수 있도록 하였다. 이를 통해 부도위험과 다양한 기업정보들 간의 복잡한 비선형적 관계들을 포착할 수 있으며, 산출에 소요되는 시간이 적다는 머신러닝 기반 부도위험 예측모델의 장점을 극대화할 수 있다. 본 연구가 기존 머신러닝 기반 모델의 한계를 극복 및 개선함으로써 실무에서의 활용도를 높일 수 있는 자료로 활용되기를 바라며, 머신러닝 기반 부도위험 예측 모형의 도입 기준 정립 및 정책적 활용에도 기여할 수 있기를 희망한다.
본 연구에서는 최신의 연구 트렌드인 빅데이터와 인공지능을 농업분야에 접목하여 유전자 알고리즘(GA)과 전지구 기후 재분석 자료를 활용한 마늘 생산량의 장기 예측 모형을 개발하고 그 예측성능을 평가해 보았다. 해당 모형은 마늘의 파종량을 수정할 수 있는 11월에 예측 자료를 생산하므로, 마늘의 생산 시기와 시간공간적으로 떨어진 전지구 기후 재분석 자료로부터 마늘생산량의 예측 인자로 활용할 수 있는 시그널을 찾아 장기적 마늘 생산량 예측에 활용하였다. 그 결과 결정론적 예측과 확률론적 예측 모두 마늘 생산량의 경년변동성을 통계적으로 99% 신뢰수준에서 관측과 유사하게 모의하였으며, 범주형 예측에서도 이분위 예측에서 93.3%, 삼분위 예측에서 73.3%의 적중률을 보이며 우수한 예측 성능을 나타내었다. 또한, 예측인자들 사이의 선형 및 비선형적 관계를 모두 고려하는 GA방법을 사용하였을 때, 선형적 앙상블 방법을 적용하였을 때 보다 높은 예측성능과 안정적인 예측결과를 보이는 것을 알 수 있다. 본 연구에서 개발된 마늘 생산량 예측 모형은 기존의 단기예측 위주의 농산물 생산량 예측의 한계를 극복하고 한 해의 농사가 시작되기 전 잠재 생산량을 전망 정보를 생산하여 농산물의 수요·공급 및 가격안정화를 위한 장기적 계획을 수립하는 것에 도움이 될 것으로 생각된다.
함경북도의 개간된 경사지의 작물 생산성과 지속 가능성을 증가시키기 위해 두과 조사료를 활용하는 것이 유리하다. 특히, 함경북도에서 두과 조사료인 알팔파를 대상으로 재배 가능지역을 파악하는 것이 미래를 대비한 사료작물 재배 관련 정책 결정에 도움이 될 수 있다. 본 연구에서는 작물의 기후적합도를 예측하는 Fuzzy Union 모형을 사용하여 현재와 미래조건에서 함경북도 내 알팔파의 기후적합도를 분석하고자 하였다. Fuzzy Union 모형으로 예측된 기후적합도와 미국 북부 지역의 실제 알팔파 재배 면적을 비교하였다. 또한, 전지구 기후모형 11종으로부터 얻어진 기후자료를 기후적합도를 계산하기 위한 입력자료로 사용하여 미래 기후변화 조건에서의 예측 불확도를 확인하였다. 미국 북부 지역을 대상으로 기후적합도의 주별 면적은 실제 알팔파 재배면적 변이의 약 44%를 설명하였다. 미래 기후조건에서 알팔파의 기후적합도는 함경북도 대부분의 지역에서 감소할 것으로 전망되었다. 예를 들어, 온성군과 경원군의 경우 현재 기후조건에서 기후적합도가 88 이상으로 분석되었지만 2090년대에 약 66%가 감소하였다. 본 연구에서 Fuzzy Union 모델을 사용하여 기후변화에 따른 알팔파 재배 적합지의 변동을 공간적으로 확인할 수 있었다. 특히, 21세기 후반에는 함경북도 지역에서 알팔파의 기후적합도가 하고현상으로 인해 크게 감소할 것으로 분석되었다. 추후에는 토양 조건을 반영하여 알팔파의 재배 적합지를 예측하고, 이와 함께 헤어리베치 등의 타 두과 사료작물의 기후적합도의 예측하는 연구가 필요할 것으로 사료되었다.
The most objective way to overcome the limitation of numerical weather prediction model is to represent the uncertainty of prediction by introducing probabilistic forecast. The uncertainty of the numerical weather prediction system developed due to the parameterization of unresolved scale motions and the energy losses from the sub-scale physical processes. In this study, we focused on the growth of model errors. We performed ensemble forecast to represent model uncertainty. By employing the multi-physics scheme (PHYS) and the stochastic kinetic energy backscatter scheme (SKEBS) in simulating typhoon Rusa (2002), we assessed the performance level of the two schemes. The both schemes produced better results than the control run did in the ensemble mean forecast of the track. The results using PHYS improved by 28% and those based on SKEBS did by 7%. Both of the ensemble mean errors of the both schemes increased rapidly at the forecast time 84 hrs. The both ensemble spreads increased gradually during integration. The results based on SKEBS represented model errors very well during the forecast time of 96 hrs. After the period, it produced an under-dispersive pattern. The simulation based on PHYS overestimated the ensemble mean error during integration and represented the real situation well at the forecast time of 120 hrs. The displacement speed of the typhoon based on PHYS was closest to the best track, especially after landfall. In the sensitivity tests of the model uncertainty of SKEBS, ensemble mean forecast was sensitive to the physics parameterization. By adjusting the forcing parameter of SKEBS, the default experiment improved in the ensemble spread, ensemble mean errors, and moving speed.
자동차는 우리의 일상에 필수재가 된 지 오래지만 자동차 교통사고로 인한 사회적 비용이 국가 예산의 9%를 넘을 정도로 심각하여 이에 대한 국가적인 예방 및 대응 체계 구축이 매우 필요한 실정이다. 이에 본 연구에서는 빅데이터 분석 기법을 활용하여 차대차 교통사고의 상해 심각도를 정확히 예측할 수 있는 모형을 제시하고자 하였다. 이를 위해 과거 3년간의 전국교통사고 발생 데이터를 토대로, K-최근접 이웃, 로지스틱 회귀분석, 나이브베이즈, 의사결정나무, 앙상블 알고리즘을 적용하여 각 모델의 상해 심각도 분류의 성능을 비교 분석하였다. 특히 이 과정에서 각 상해 심각도 수준 간의 데이터 수에 차이가 있음에 주목하여 표본수가 많은 그룹에 대해서는 과소표본추출을 시행하는 등의 방법을 통해 분류 예측의 정확도를 높일 수 있었고, 분산 분석을 통해 모델의 유의성을 검증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.