• Title/Summary/Keyword: 앙상블모형

Search Result 193, Processing Time 0.031 seconds

Development of decision support system for water resources management using GloSea5 long-term rainfall forecasts and K-DRUM rainfall-runoff model (GloSea5 장기예측 강수량과 K-DRUM 강우-유출모형을 활용한 물관리 의사결정지원시스템 개발)

  • Song, Junghyun;Cho, Younghyun;Kim, Ilseok;Yi, Jonghyuk
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.3
    • /
    • pp.22-34
    • /
    • 2017
  • The K-DRUM(K-water hydrologic & hydraulic Distributed RUnoff Model), a distributed rainfall-runoff model of K-water, calculates predicted runoff and water surface level of a dam using precipitation data. In order to obtain long-term hydrometeorological information, K-DRUM requires long-term weather forecast. In this study, we built a system providing long-term hydrometeorological information using predicted rainfall ensemble of GloSea5(Global Seasonal Forecast System version 5), which is the seasonal meteorological forecasting system of KMA introduced in 2014. This system produces K-DRUM input data by automatic pre-processing and bias-correcting GloSea5 data, then derives long-term inflow predictions via K-DRUM. Web-based UI was developed for users to monitor the hydrometeorological information such as rainfall, runoff, and water surface level of dams. Through this UI, users can also test various dam management scenarios by adjusting discharge amount for decision-making.

Hydrologic Variable Prediction Using Nonlinear Ensemble Model (비선형 앙상블 모형을 이용한 수문량 예측)

  • Kwon, Hyun-Han;Kim, Min-Ji;Kim, Jang-Kyung;Na, Bong-Gil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.359-359
    • /
    • 2011
  • 기존 수자원계획에 있어서 수문량 예측은 매우 제한적으로 활용되고 있는 실정으로서 최근 기후변화 및 이상기후로 기인하는 기상학적 불확실성 증가에 대해서 효과적으로 대응 하기가 어렵다. 본 연구에서는 기상인자를 활용한 수문변량 예측기법을 개발하고자 하며 국내에 수문자료가 충분한 지역에 대해서 모형의 적합성과 타당성을 평가하고자 한다. 대부분의 수문변량은 해수면온도, 해수면기압, 바람장 등 Large Scale의 기상학적 특성과 연관성을 가지고 있으며 선행시간을 가지고 수문순환에 영향을 주고 있다. 수문변량과 기상학적 변량사이에는 일반적으로 비선형 관계를 가지고 있는 것으로 알려지고 있으며 이러한 비선형 관계를 효과적으로 예측하기 위해서 본 연구에서는 비선형 예측모형을 개발 하고자 한다. 최근 비선형 예측모형에서 불확실성을 고려한 모형에 대한 연구가 활발히 진행되고 있으며 특히, 다중 모형을 사용한 Ensemble 개념의 예측모형 도입이 이루어지고 있다. 본 연구에서는 국내 다목적댐 유입량 및 강수량에 대해서 최적 기상변량을 도출하고 이를 활용한 비선형 Ensemble 예측모형을 개발하였다. 일반적인 선형 회귀분석 모형에 비해 기상현상과 수문현상에 비선형성을 효과적으로 재현할 수 있는 장점을 확인할 수 있었으며 이와 더불어 예측결과에 대한 불확실성을 제공함으로서 신뢰성 있는 수자원 계획을 위한 기초자료로서 활용이 가능할 것으로 판단된다.

  • PDF

A study on a tendency of parameters for nonstationary distribution using ensemble empirical mode decomposition method (앙상블 경험적 모드분해법을 활용한 비정상성 확률분포형의 매개변수 추세 분석에 관한 연구)

  • Kim, Hanbeen;Kim, Taereem;Shin, Hongjoon;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.4
    • /
    • pp.253-261
    • /
    • 2017
  • A lot of nonstationary frequency analyses have been studied in recent years as the nonstationarity occurs in hydrologic time series data. In nonstationary frequency analysis, various forms of probability distributions have been proposed to consider the time-dependent statistical characteristics of nonstationary data, and various methods for parameter estimation also have been studied. In this study, we aim to introduce a parameter estimation method for nonstationary Gumbel distribution using ensemble empirical mode decomposition (EEMD); and to compare the results with the method of maximum likelihood. Annual maximum rainfall data with a trend observed by Korea Meteorological Administration (KMA) was applied. As a result, both EEMD and the method of maximum likelihood selected an appropriate nonstationary Gumbel distribution for linear trend data, while the EEMD selected more appropriate nonstationary Gumbel distribution than the method of maximum likelihood for quadratic trend data.

Hydrologic Utilization of Radar-Derived Rainfall (II) Uncertainty Analysis (레이더 추정강우의 수문학적 활용 (II): 불확실성 해석)

  • Kim Jin-Hoon;Lee Kyoung-Do;Bae Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.12 s.161
    • /
    • pp.1051-1060
    • /
    • 2005
  • The present study analyzes hydrologic utilization of optimal radar-derived rainfall by using semi-distributed TOPMODEL and evaluates the impacts of radar rainfall and model parametric uncertainty on a hydrologic model. Monte Carlo technique is used to produce the flow ensembles. The simulated flows from the corrected radar rainfalls with real-time bias adjustment scheme are well agreed to observed flows during 22-26 July 2003. It is shown that radar-derived rainfall is useful for simulating streamflow on a basin scale. These results are diagnose with which radar-rainfall Input and parametric uncertainty influence the character of the flow simulation uncertainty. The main conclusions for this uncertainty analysis are that the radar input uncertainty is less influent than the parametric one, and combined uncertainty with radar and Parametric input can be included the highest uncertainty on a streamflow simulation.

Bias-correction of near-real-time multi-satellite precipitation products using machine learning (머신러닝 기반 준실시간 다중 위성 강수 자료 보정)

  • Sungho Jung;Xuan-Hien Le;Van-Giang Nguyen;Giha Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.280-280
    • /
    • 2023
  • 강수의 정확한 시·공간적 추정은 홍수 대응, 가뭄 관리, 수자원 계획 등 수문학적 모델링의 핵심 기술이다. 우주 기술의 발전으로 전지구 강수량 측정 프로젝트(Global Precipitation Measurement, GPM)가 시작됨에 따라 위성의 여러 센서를 이용하여 다양한 고해상도 강수량 자료가 생산되고 있으며, 기후변화로 인한 수재해의 빈도가 증가함에 따라 준실시간(Near-Real-Time) 위성 강수 자료의 활용성 및 중요성이 높아지고 있다. 하지만 준실시간 위성 강수 자료의 경우 빠른 지연시간(latency) 확보를 위해 관측 이후 최소한의 보정을 거쳐 제공되므로 상대적으로 강수 추정치의 불확실성이 높다. 이에 따라 본 연구에서는 앙상블 머신러닝 기반 수집된 위성 강수 자료들을 관측 자료와 병합하여 보정된 준실시간 강수량 자료를 생성하고자 한다. 모형의 입력에는 시단위 3가지 준실시간 위성 강수 자료(GSMaP_NRT, IMERG_Early, PERSIANN_CCS)와 방재기상관측 (AWS)의 온도, 습도, 강수량 지점 자료를 활용하였다. 지점 강수 자료의 경우 결측치를 고려하여 475개 관측소를 선정하였으며, 공간성을 고려한 랜덤 샘플링으로 375개소(약 80%)는 훈련 자료, 나머지 100개소(약 20%)는 검증 자료로 분리하였다. 모형의 정량적 평가 지표로는 KGE, MAE, RMSE이 사용되었으며, 정성적 평가 지표로 강수 분할표에 따라 POD, SR, BS 그리고 CSI를 사용하였다. 머신러닝 모형은 개별 원시 위성 강수 자료 및 IDW 기법보다 높은 정확도로 강수량을 추정하였으며 공간적으로 안정적인 결과를 나타내었다. 다만, 최대 강수량에서는 다소 과소추정되므로 이는 강수와 관련된 입력 변수의 개수 업데이트로 해결할 수 있을 것으로 판단된다. 따라서 불확실성이 높은 개별 준실시간 위성 자료들을 관측 자료와 병합하여 보정된 최적 강수 자료를 생성하는 머신러닝 기법은 돌발성 수재해에 실시간으로 대응 가능하며 홍수 예보에 신뢰도 높은 정량적인 강수량 추정치를 제공할 수 있다.

  • PDF

Machine Learning Algorithms Evaluation and CombML Development for Dam Inflow Prediction (댐 유입량 예측을 위한 머신러닝 알고리즘 평가 및 CombML 개발)

  • Hong, Jiyeong;Bae, Juhyeon;Jeong, Yeonseok;Lim, Kyoung Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.317-317
    • /
    • 2021
  • 효율적인 물관리를 위한 댐 유입량 대한 연구는 필수적이다. 본 연구에서는 다양한 머신러닝 알고리즘을 통해 40년동안의 기상 및 댐 유입량 데이터를 이용하여 소양강댐 유입량을 예측하였으며, 그 중 고유량과 저유량예측에 적합한 알고리즘을 각각 선정하여 머신러닝 알고리즘을 결합한 CombML을 개발하였다. 의사 결정 트리 (DT), 멀티 레이어 퍼셉트론 (MLP), 랜덤 포레스트(RF), 그래디언트 부스팅 (GB), RNN-LSTM 및 CNN-LSTM 알고리즘이 사용되었으며, 그 중 가장 정확도가 높은 모형과 고유량이 아닌 경우에서 특별히 예측 정확도가 높은 모형을 결합하여 결합 머신러닝 알고리즘 (CombML)을 개발 및 평가하였다. 사용된 알고리즘 중 MLP가 NSE 0.812, RMSE 77.218 m3/s, MAE 29.034 m3/s, R 0.924, R2 0.817로 댐 유입량 예측에서 최상의 결과를 보여주었으며, 댐 유입량이 100 m3/s 이하인 경우 앙상블 모델 (RF, GB) 이 댐 유입 예측에서 MLP보다 더 나은 성능을 보였다. 따라서, 유입량이 100 m3/s 이상 시의 평균 일일 강수량인 16 mm를 기준으로 강수가 16mm 이하인 경우 앙상블 방법 (RF 및 GB)을 사용하고 강수가 16 mm 이상인 경우 MLP를 사용하여 댐 유입을 예측하기 위해 두 가지 복합 머신러닝(CombML) 모델 (RF_MLP 및 GB_MLP)을 개발하였다. 그 결과 RF_MLP에서 NSE 0.857, RMSE 68.417 m3/s, MAE 18.063 m3/s, R 0.927, R2 0.859, GB_MLP의 경우 NSE 0.829, RMSE 73.918 m3/s, MAE 18.093 m3/s, R 0.912, R2 0.831로 CombML이 댐 유입을 가장 정확하게 예측하는 것으로 평가되었다. 본 연구를 통해 하천 유황을 고려한 여러 머신러닝 알고리즘의 결합을 통한 유입량 예측 결과, 알고리즘 결합 시 예측 모형의 정확도가 개선되는 것이 확인되었으며, 이는 추후 효율적인 물관리에 이용될 수 있을 것으로 판단된다.

  • PDF

A study on the uncertainty analysis of LENS-GRM using formal and informal likelihood measure (정형·비정형 우도를 이용한 LENS-GRM 불확실성 해석)

  • Lee, Sang Hyup;Choo, Inn Kyo;Yu, Yeong Uk;Jung, Younghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.317-317
    • /
    • 2020
  • 수재해는 수자원 인프라의 부족 및 관리 미흡 등 많은 요인들이 있지만 강우의 유무와 크기가 가장 원초적인 요인들 중 하나이다. 정확한 강우량 추정 및 강우발생시간 예측은 수재해로 인한 피해를 예방하고 빠르게 대처할 수 있다. 그러나 강우예측에는 많은 불확실성을 내포하고 있기 때문에 이러한 불확실성을 이해하고 줄여 나가는 것이 필요하다. 최근 컴퓨터의 성능의 발전에 비례해 강우 예측 자료들도 점진적으로 발전을 거듭하고 있다. 이를 강우-유출 모형에 적용시 유출량 예측의 정확성 또한 비례하여 한층 더 발전할 수 있을 것이다. 하지만 신뢰성이 낮은 입력자료를 대상으로 하는 유출해석 모형은 많은 불확실성을 내포할 것이다. 따라서 본 연구에서는 위천 유역에 대해 LENS(Limited area ENsemble prediction System) 강우앙상블 예측자료의 적용성을 검토하고 그리드 기반 강우 유출 모델 GRM(Grid based Rainfall-runoff Model) 에 적용하여 유출예측의 불확실성을 평가하고자 하였다. 또한 강우예측 및 유출예측은 수 많은 매개변수를 포함하며 최종적인 예측은 더 큰 불확실한 범위로 산출될 수 있다. 이에 따라 본 연구에서는 Python3 기반 코딩으로 LENS 자료 구축 및 GRM 모형의 매개변수 보정을 각 2000회 씩에 걸쳐 총 2회 실시하여 수문학적, 지형학적 인자에 따른 불확실성 범위를 보정하고자 하였다. 매개변수의 보정은 비정형우도(Informal likelihood) NSE, 정형우도(Formal likelihood) Lognormal(Log-likelihood function)의 우도에 따른 행위모델을 산정하여 보정하였다. 따라서 본 연구에서는 선행연구들을 참고한 정형, 비정형 우도의 임계치를 이용한 불확실성해석에 적용하였으며 이는 사용자의 행위모델선정 임계치 범위 선정으로 인한 불확실성을 줄여나감에 기여할 수 있을것으로 사료된다.

  • PDF

Development of Realtime Dam's Hydrologic Variables Prediction Model using Observed Data Assimilation and Reservoir Operation Techniques (관측자료 동화기법과 댐운영을 고려한 실시간 댐 수문량 예측모형 개발)

  • Lee, Byong Ju;Jung, Il-Won;Jung, Hyun-Sook;Bae, Deg Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.7
    • /
    • pp.755-765
    • /
    • 2013
  • This study developed a real-time dam's hydrologic variables prediction model (DHVPM) and evaluated its performance for simulating historical dam inflow and outflow in the Chungju dam basin. The DHVPM consists of the Sejong University River Forecast (SURF) model for hydrologic modeling and an autoreservoir operation method (Auto ROM) for dam operation. SURF model is continuous rainfall-runoff model with data assimilation using an ensemble Kalman filter technique. The four extreme events including the maximum inflow of each year for 2006~2009 were selected to examine the performance of DHVPM. The statistical criteria, the relative error in peak flow, root mean square error, and model efficiency, demonstrated that DHVPM with data assimilation can simulate more close to observed inflow than those with no data assimilation at both 1-hour lead time, except the relative error in peak flow in 2007. Especially, DHVPM with data assimilation until 10-hour lead time reduced the biases of inflow forecast attributed to observed precipitation error. In conclusion, DHVPM with data assimilation can be useful to improve the accuracy of inflow forecast in the basin where real-time observed inflow are available.

Development of Predictive Model for Length of Stay(LOS) in Acute Stroke Patients using Artificial Intelligence (인공지능을 이용한 급성 뇌졸중 환자의 재원일수 예측모형 개발)

  • Choi, Byung Kwan;Ham, Seung Woo;Kim, Chok Hwan;Seo, Jung Sook;Park, Myung Hwa;Kang, Sung-Hong
    • Journal of Digital Convergence
    • /
    • v.16 no.1
    • /
    • pp.231-242
    • /
    • 2018
  • The efficient management of the Length of Stay(LOS) is important in hospital. It is import to reduce medical cost for patients and increase profitability for hospitals. In order to efficiently manage LOS, it is necessary to develop an artificial intelligence-based prediction model that supports hospitals in benchmarking and reduction ways of LOS. In order to develop a predictive model of LOS for acute stroke patients, acute stroke patients were extracted from 2013 and 2014 discharge injury patient data. The data for analysis was classified as 60% for training and 40% for evaluation. In the model development, we used traditional regression technique such as multiple regression analysis method, artificial intelligence technique such as interactive decision tree, neural network technique, and ensemble technique which integrate all. Model evaluation used Root ASE (Absolute error) index. They were 23.7 by multiple regression, 23.7 by interactive decision tree, 22.7 by neural network and 22.7 by esemble technique. As a result of model evaluation, neural network technique which is artificial intelligence technique was found to be superior. Through this, the utility of artificial intelligence has been proved in the development of the prediction LOS model. In the future, it is necessary to continue research on how to utilize artificial intelligence techniques more effectively in the development of LOS prediction model.

Long-term runoff simulation using rainfall LSTM-MLP artificial neural network ensemble (LSTM - MLP 인공신경망 앙상블을 이용한 장기 강우유출모의)

  • An, Sungwook;Kang, Dongho;Sung, Janghyun;Kim, Byungsik
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.2
    • /
    • pp.127-137
    • /
    • 2024
  • Physical models, which are often used for water resource management, are difficult to build and operate with input data and may involve the subjective views of users. In recent years, research using data-driven models such as machine learning has been actively conducted to compensate for these problems in the field of water resources, and in this study, an artificial neural network was used to simulate long-term rainfall runoff in the Osipcheon watershed in Samcheok-si, Gangwon-do. For this purpose, three input data groups (meteorological observations, daily precipitation and potential evapotranspiration, and daily precipitation - potential evapotranspiration) were constructed from meteorological data, and the results of training the LSTM (Long Short-term Memory) artificial neural network model were compared and analyzed. As a result, the performance of LSTM-Model 1 using only meteorological observations was the highest, and six LSTM-MLP ensemble models with MLP artificial neural networks were built to simulate long-term runoff in the Fifty Thousand Watershed. The comparison between the LSTM and LSTM-MLP models showed that both models had generally similar results, but the MAE, MSE, and RMSE of LSTM-MLP were reduced compared to LSTM, especially in the low-flow part. As the results of LSTM-MLP show an improvement in the low-flow part, it is judged that in the future, in addition to the LSTM-MLP model, various ensemble models such as CNN can be used to build physical models and create sulfur curves in large basins that take a long time to run and unmeasured basins that lack input data.