• 제목/요약/키워드: 앙상블모델

검색결과 313건 처리시간 0.027초

불균형 데이터의 이진 분류를 위한 앙상블 구성 방법 (Ensemble Composition Methods for Binary Classification of Imbalanced Data)

  • 김영훈;이주홍
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.689-691
    • /
    • 2023
  • 불균형 데이터의 분류의 성능을 향상시키기 위한 앙상블 구성 방법에 관하여 연구한다. 앙상블의 성능은 앙상블을 구성한 기계학습 모델 간의 상호 다양성에 큰 영향을 받는다. 기존 방법에서는 앙상블에 속할 모델 간의 상호 다양성을 높이기 위해 Feature Engineering 을 사용하여 다양한 모델을 만들어 사용하였다. 그럼에도 생성된 모델 가운데 유사한 모델들이 존재하며 이는 상호 다양성을 낮추고 앙상블 성능을 저하시키는 문제를 가지고 있다. 불균형 데이터의 경우에는 유사 모델 판별을 위한 기존 다양성 지표가 다수 클래스에 편향된 수치를 산출하기 때문에 적합하지 않다. 본 논문에서는 기존 다양성 지표를 개선하고 가지치기 방안을 결합하여 유사 모델을 판별하고 상호 다양성이 높은 후보 모델들을 앙상블에 포함시키는 방법을 제안한다. 실험 결과로써 제안한 방법으로 구성된 앙상블이 불균형이 심한 데이터의 분류 성능을 향상시킴을 확인하였다.

자연어 추론에서의 교차 검증 앙상블 기법 (Cross-Validated Ensemble Methods in Natural Language Inference)

  • 양기수;황태선;오동석;박찬준;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.8-11
    • /
    • 2019
  • 앙상블 기법은 여러 모델을 종합하여 최종 판단을 산출하는 기계 학습 기법으로서 딥러닝 모델의 성능 향상을 보장한다. 하지만 대부분의 기법은 앙상블만을 위한 추가적인 모델 또는 별도의 연산을 요구한다. 이에 우리는 앙상블 기법을 교차 검증 방법과 결합하여 앙상블 연산을 위한 비용을 줄이며 일반화 성능을 높이는 교차 검증 앙상블 기법을 제안한다. 본 기법의 효과를 입증하기 위해 MRPC, RTE 데이터셋과 BiLSTM, CNN, BERT 모델을 이용하여 기존 앙상블 기법보다 향상된 성능을 보인다. 추가로 교차 검증에서 비롯한 일반화 원리와 교차 검증 변수에 따른 성능 변화에 대하여 논의한다.

  • PDF

앙상블 조합 방법에 따른 주가 예측 성능 비교 (Comparison of Stock Price Forecasting Performance by Ensemble Combination Method)

  • 양현성;박준;소원호;심춘보
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.524-527
    • /
    • 2022
  • 본 연구에서는 머신러닝(Machine Learning, ML)과 딥러닝(Deep Learning, DL) 모델을 앙상블(Ensemble)하여 어떠한 주가 예측 방법이 우수한지에 대한 연구를 하고자 한다. 연구에 사용된 모델은 하이퍼파라미터(Hyperparameter) 조정을 통하여 최적의 결과를 출력한다. 앙상블 방법은 머신러닝과 딥러닝 모델의 앙상블, 머신러닝 모델의 앙상블, 딥러닝 모델의 앙상블이다. 세 가지 방법으로 얻은 결과를 평균 제곱근 오차(Root Mean Squared Error, RMSE)로 비교 분석하여 최적의 방법을 찾고자 한다. 제안한 방법은 주가 예측 연구의 시간과 비용을 절약하고, 최적 성능 모델 판별에 도움이 될 수 있다고 사료된다.

하이브리드 Auto-sklearn 앙상블 모델을 이용한 댐 유입량 예측 및 평가 (Dam Inflow Prediction and Evaluation Using Hybrid Auto-sklearn Ensemble Model)

  • 이서로;배주현;이관재;양동석;홍지영;김종건;임경재
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.307-307
    • /
    • 2022
  • 최근 기후변화와 댐 상류 토지이용 변화 등과 같은 다양한 원인에 의해 댐 유입량의 변동성이 증가하면서 댐 관리 및 운영조작 의사 결정에 어려움이 발생하고 있다. 따라서 이러한 댐 유입량의 변동 특성을 반영하여 댐 유입량을 정확하고 효율적으로 예측할 수 있는 방안이 필요한 실정이다. 머신러닝 기술이 발전하면서 Auto-ML(Automated Machine Learning)이 다양한 분야에서 활용되고 있다. Auto-ML은 데이터 전처리, 최적 알고리즘 선택, 하이퍼파라미터 튜닝, 모델 학습 및 평가 등의 모든 과정을 자동화하는 기술이다. 그러나 아직까지 수문 분야에서 댐 유입량을 예측하기 위한 모델을 개발하는데 있어서 Auto-ML을 활용한 사례는 부족하고, 특히 댐 유입량의 예측 정확성을 확보하기 위해 High-inflow and low-inflow 의 변동 특성을 고려한 하이브리드 결합 방식을 통해 Auto-ML 기반 앙상블 모델을 개발하고 평가한 연구는 없다. 본 연구에서는 Auto-ML의 패키지 중 Auto-sklearn을 통해 홍수기, 비홍수기 유입량 변동 특성을 반영한 하이브리드 앙상블 댐 유입량 예측 모델을 개발하였다. 소양강댐을 대상으로 적용한 결과, 하이브리드 Auto-sklearn 앙상블 모델의 댐 유입량 예측 성능은 R2 0.868, RMSE 66.23 m3/s, MAE 16.45 m3/s로 단일 Auto-sklearn을 통해 구축 된 앙상블 모델보다 전반적으로 우수한 것으로 나타났다. 특히 FDC (Flow Duration Curve)의 저수기, 갈수기 구간에서 두 모델의 유입량 예측 경향은 큰 차이를 보였으며, 하이브리드 Auto-sklearn 모델의 예측 값이 관측 값과 더욱 유사한 것으로 나타났다. 이는 홍수기, 비홍수기 구간에 대한 앙상블 모델이 독립적으로 구축되는 과정에서 각 모델에 대한 하이퍼파라미터가 최적화되었기 때문이라 판단된다. 향후 본 연구의 방법론은 보다 정확한 댐 유입량 예측 자료를 생성하기 위한 방안 수립뿐만 아니라 다양한 분야의 불균형한 데이터셋을 이용한 앙상블 모델을 구축하는데도 유용하게 활용될 수 있을 것으로 사료된다.

  • PDF

데이터 불균형 기법의 부작용 완화를 위한 어텐션 기반 앙상블 (Attention-Based Ensemble for Mitigating Side Effects of Data Imbalance Method)

  • 박요한;최용석;;이공주
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.546-551
    • /
    • 2023
  • 일반적으로 딥러닝 모델은 모든 라벨에 데이터 수가 균형을 이룰 때 가장 좋은 성능을 보인다. 그러나 현실에서는 특정라벨에 대한 데이터가 부족한 경우가 많으며 이로 인해 불균형 데이터 문제가 발생한다. 이에 대한 해결책으로 오버샘플링과 가중치 손실과 같은 데이터 불균형 기법이 연구되었지만 이러한 기법들은 데이터가 적은 라벨의 성능을 개선하는 동시에 데이터가 많은 라벨의 성능을 저하시키는 부작용을 가지고 있다. 본 논문에서는 이 문제를 완화시키고자 어텐션 기반의 앙상블 기법을 제안한다. 어텐션 기반의 앙상블은 데이터 불균형 기법을 적용한 모델과 적용하지 않은 모델의 출력 값을 가중 평균하여 최종 예측을 수행한다. 이때 가중치는 어텐션 메커니즘을 통해 동적으로 조절된다. 그로므로 어텐션 기반의 앙상블 모델은 입력 데이터 특성에 따라 가중치를 조절할 수가 있다. 실험은 에세이 자동 평가 데이터를 대상으로 수행하였다. 실험 결과로는 제안한 모델이 데이터 불균형 기법의 부작용을 완화하고 성능이 개선되었다.

  • PDF

앙상블 기반의 위조 탐지 알고리즘 (Ensemble-based Counterfeit Detection Algorithm)

  • 타히예프 일킨;조영복
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제67차 동계학술대회논문집 31권1호
    • /
    • pp.101-102
    • /
    • 2023
  • 본 연구에서는 인터넷 상에서 발생되는 부정행위를 탐지할수 있는 신뢰 모델을 생성하고 개인의 프라이버시를 보장할수 있는 모델을 제시하였다. 인터넷 상에 게시판에 올려진 부정해위를 탐지하기 위해 앙상블 접근 방식 기반의 분류 모델을 제시하고 자동화된 도구를 제안하였다. 본 연구는 데이터에 대한 탐색적 데이터 분석을 수행하고 얻은 통찰력을 사용해 자연어처리 가반 텍스트를 기반으로 앙상블 기반의 위조 탐지 알고리즘을 제안하였다. 제안 알고리즘의 정확도는 99%로 자연어 처리에 높은 탐지율을 보였다.

  • PDF

스태킹 앙상블 기법을 활용한 고속도로 교통정보 예측모델 개발 및 교차검증에 따른 성능 비교 (Development of Highway Traffic Information Prediction Models Using the Stacking Ensemble Technique Based on Cross-validation)

  • 이요셉;오석진;김예진;박성호;윤일수
    • 한국ITS학회 논문지
    • /
    • 제22권6호
    • /
    • pp.1-16
    • /
    • 2023
  • 정확도가 높은 교통정보 예측은 지능형교통체계(intelligent transport systems, ITS)를 통한 교통 시설 이용자들의 혼잡 경로 회피 안내 등에서 활용되는 중요한 기능이다. 정확한 교통정보예측을 위해 다양한 딥러닝 모델들이 발전되어 왔다. 최근에는 앙상블 기법을 활용하여 다양한 모델들의 장단점을 결합하여 예측 정확도와 안정성을 높이고 있다. 따라서, 본 연구에서는 다양한 딥러닝 모델들을 활용하여 교통정보 예측 모델을 개발하였으며, 개발된 딥러닝 모델들을 스태킹 앙상블(stacking ensemble)하여 성능을 개선하였다. 개별 모델들은 교통량 예측에서 10% 이내의 오차율을, 속도 예측에서 3% 이내의 오차율을 보였다. 앙상블 모델은 교차검증을 수행하지 않았을 때, 타 모델과 비교하여 더욱 높은 정확도를 보였다. 교차검증을 수행한 앙상블 모델은 장기예측에서 타 모델보다 균일한 오차율을 보이는 것으로 나타났다.

그래프 신경망에 대한 그래디언트 부스팅 기법 (A Gradient Boosting Method for Graph Neural Networks)

  • 장은조;이기용
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.574-576
    • /
    • 2022
  • 최근 여러 분야에서 그래프 신경망(graph neural network, GNN)이 활발히 연구되고 있다. 하지만 지금까지 대부분의 GNN 연구는 단일 GNN 모델의 성능을 향상하는 데 집중되었다. 본 논문에서는 앙상블(ensemble) 기법의 대표적 기법인 그래디언트 부스팅(gradient boosting)을 이용하여 GNN의 앙상블 모델을 만드는 방법을 제안한다. 제안 방법은 앞서 만들어진 GNN의 오차를 경사 하강법(gradient descent)을 이용하여 감소시키는 방향으로 다음 GNN을 생성한다. 이 과정을 반복하여 GNN의 최종 앙상블 모델을 얻는다. 실험에서 GNN의 대표적인 모델인 그래프 합성곱 신경망(graph convolutional network, GCN)에 제안 방법을 적용하여 앙상블 모델을 생성한 결과, 단일 GCN 모델에 비해 노드 분류 정확도가 11.3%p까지 증가하였음을 확인하였다.

입력공간 분담에 의한 네트워크들의 앙상블 알고리즘 (Ensemble of Specialized Networks based on Input Space Partition)

  • 신현정;이형주;조성준
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2000년도 추계학술대회 및 정기총회
    • /
    • pp.33-36
    • /
    • 2000
  • 관찰학습(OLA: Observational Learning Algorithm)은 앙상블 네트워크의 각 구성 모델들이 다른 모델들을 관찰함으로써 얻어진 가상 데이터와 초기에 bo otstrap된 실제 데이터를 학습에 함께 이용하는 방법이다. 본 논문에서는, 초기 학습 데이터 셋을 분할하고 분할된 각 데이터 셋에 대하여 앙상블의 구성 모델들을 전문화(specialize)시키는 방법을 적용하여 기존의 관찰학습 알고리즘을 개선시켰다. 제안된 알고리즘은 bagging 및 boosting과의 비교실험에 의하여, 보다 적은 수의 구성 모델로 동일 내지 보다 나은 성능을 나타냄이 실험적으로 검증되었다.

  • PDF

전문화된 네트워크들의 결합에 의한 앙상블 학습 알고리즘 (Ensemble Learning Algorithm of Specialized Networks)

  • 신현정;이형주;조성준
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (2)
    • /
    • pp.308-310
    • /
    • 2000
  • 관찰학습(OLA: Observational Learning Algorithm)은 앙상블 네트워크의 각 구성 모델들이 아른 모델들을 관찰함으로써 얻어진 가상 데이터와 초기에 bootstrap된 실제 데이터를 학습에 함께 이용하는 방법이다. 본 논문에서는, 초기 학습 데이터 셋을 분할하고 분할된 각 데이터 셋에 대하여 앙상블의 구성 모델들을 전문화(specialize)시키는 방법을 적용하여 기존의 관찰학습 알고리즘을 개선시켰다. 제안된 알고리즘은 bagging 및 boosting과의 비교 실험에 의하여, 보다 적은 수의 구성 모델로 동일 내지 보다 나은 성능을 나타냄이 실험적으로 검증되었다.

  • PDF