• Title/Summary/Keyword: 압하

Search Result 7,244, Processing Time 0.041 seconds

Radiation Damage of Semiconductor Device by X-ray (엑스선에 의한 반도체 소자의 방사선 손상)

  • Kim, D.S.;Hong, H.S.;Park, H.M.;Kim, J.H.;Joo, K.S.
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.2
    • /
    • pp.110-117
    • /
    • 2015
  • Recently, Due to the increased industry using radiation inspection equipment in the semiconductor, this demand of technology research is increasing. Although semiconductor inspection equipment is using low energy X-ray from 40 keV to 120 keV, Studies of radiation damage about the low energy X-ray are lacking circumstance in our country. Therefore, It is study that BJT (bipolar junction transistor) of one type of semiconductor elements are received radiation damage by low energy X-ray. BJT were used to the NXP semiconductor company's BC817-25 (NPN type), and Used the X-ray generator for the irradiation. Radiation damage of BJT was evaluated that confirm to analyse change of collector-emitter voltage of before and after X-ray irradiation when current gain fixed to 10. X-ray generator of tube voltage was setting 40 kVp, 60 kVp, 80 kVp, 100 kVp, 120 kVp and irradiation time was setting 180s, 360s, 540s into 180s intervals. As the result, We confirmed radiation damage in BJT by low energy X-ray under 120 keV energy, and Especially the biggest radiation damage was appeared at the 80 kVp. It is expected that ELDRS (enhanced low dose rate sensitivity) phenomenon occurs on the basis of 80 kVp. This studies expect to contribute effective dose administration of semiconductor inspection equipment using low energy X-ray, Also Research and Development of X-ray filter.

Evaluation of the Radiopacity of Contemporary Luting Cements by Digital Radiography (디지털방사선촬영술을 이용한 합착용 시멘트의 방사선불투과성 평가)

  • An, Seo-Young;Lee, Du-Hyeong;Lee, Kyu-Bok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.4
    • /
    • pp.377-383
    • /
    • 2013
  • This study examined the radiopacity of eight contemporary luting cements by direct digital radiography. Five disc-shaped specimens ($5mm{\times}1mm$) were prepared for each material tested (BisCem, Clearfil SA Luting, Duolink, Maxcem Elite, Multilink Speed, Panavia F 2.0, RelyX Unicem Clicker, V-link). The specimens were radiographed using a Kodak CS 7600 image plate (Carestream Health, Inc., Rochester, NY, USA) and an aluminum step wedge with a range of thicknesses (1.5 to 16.5 mm in 1.5 mm increments) and a 1 mm tooth used as a reference. A dental X-ray machine Kodak 2200 Intraoral X-ray System (Carestream Health, Inc., Rochester, NY, USA), operating at 70 kVp, 4 mA, 0.156 s and a source-to-sample distance of 30 cm, was used. According to international standards, the radiopacity of the specimens was compared with that of an aluminum step wedge using NIH ImageJ software (available at http://rsb.info.nih.gov/ij/).The data was analyzed by ANOVA and a Tukey's post hoc test. Maxcem Elite (5.66) showed the highest radiopacity of all materials, followed in order by Multilink Speed (3.87) and V-link (2.83). The radiopacity of Clearfil SA Luting (1.35), BisCem (1.33), Panavia F 2.0 (1.29) and Duolink (1.10) were between enamel (1.79) and dentin (0.19). RelyX Unicem Clicker (0.71) showed the lowest radiopacity, which was higher than that of dentin. All materials showed a radiopacity above the minimum recommended by the International Organization for Standardization and the American National Standards/American Dental Association with the exception of RelyX Unicem Clicker.

Luminescence Characteristics of ${Y_2}{O_3}$:Eu Phosphor Treated with $\alpha$-${Fe_2}{O_3}$Prepared by Two Different Methods Using $FeSO_4$.$7H_2$O ($FeSO_4$.$7H_2$O를 이용하여 서로 다른 방법으로 만들어진 $\alpha$-${Fe_2}{O_3}$를 표면처리한 ${Y_2}{O_3}$:Eu 적색 형광체의 발광 특성)

  • 김봉철;이춘엽;송윤호;서경수;이진호;이남양;김동국;박이순;이병교
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.12
    • /
    • pp.1115-1122
    • /
    • 2001
  • The tendency of the miximum brightness of $Y_2$O$_3$:Eu phosphor with various activator concentration, by different surface treatment methods as well as different exciting energies were investigated. The surface treatment methods were the adsorption method used $\alpha$-Fe$_2$O$_3$powder prepared emulsion-drying process and the precipitation method used FeSO$_4$/ethanol. Eu concentration of maximum brightness of $Y_2$O$_3$:Eu phosphor prepared by solid-solid state was changed with various exciting energies. The concentrations were 0.02 mol at VUV(147 nm) as well as 400 V and 0.03 mol at 5 kV. The phosphor treated both by adsorption method and precipitation method showed decreasing luminescent intensity with increasing amount of $\alpha$-Fe$_2$O$_3$, and the methods are chosen by exciting energy. Adsorption method was effective in a low voltage and VUV(147nm) region, and precipitation method was effective in the high voltage region.

  • PDF

Effects of UV-B Radiation and Water Stress on Hardening Phase Growth of Container-Grown Betula platyphylla Seedlings (자작나무 콘테이너묘(苗)의 경화단계(硬化段階) 생장(生長)에 미치는 UV-B 와 수분(水分)스트레스의 효과(效果))

  • Kim, Jong Jin;Hong, Sung Gak
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.4
    • /
    • pp.601-610
    • /
    • 1998
  • This study was carried out to investigate the possibility of supplemental UV-B application to the hardening phase of container-grown Betula platyphylla seedlings. The containerized seedlings were grown in a growth chamber for four months and then treated with UV-B(UV-$B_{BE}$ $3.2KJ\;m^{-2}\;day^{-1}$ and $5.2KJ\;m^{-2}\;day^{-1}$) radiation and water stress regime(irrigation in one week interval) for four weeks. The differences in growth and physiological responses of the seedlings before and after the treatments were analyzed. UV-B radiation and water stress reduced height growth and leaf dry mass accumulation of the seedlings. The root collar diameter growth was reduced by UV-B radiation but increased by water stress. The reduction in leaf dry weight by UV-B radiation and water stress reduced T/R ratio of the seedling. The reduction in T/R ratio was the most apparent by water stress. Chlorophyll index observed by a chlorophyll meter was the lowest in the $5.2KJ\;m^{-2}\;day^{-1}$ of UV-B radiation, and those in the $3.2KJ\;m^{-2}\;day^{-1}$ and water stress were similar. UV-B radiation and water stress reduced both water content in the seedlings and leaf water potential, and increased leaf osmatic pressure. The water content of leaves and shoots was reduced more rapidly by UV-B radiation than by water stress treatment. In conclusion, growth responses and physiological changes in water relation by supplemental UV-B radiation which was applied to the hardening phase of container-grown Betula platyphylla seedlings were similar results to the water stress treatment.

  • PDF

Effect of Sea Water on Curing and Strength of Cemented Sand (해수가 고결모래의 양생 및 강도에 미치는 영향)

  • Park, Sung-Sik;Lee, Jun-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.6
    • /
    • pp.71-79
    • /
    • 2012
  • Sand compaction pile and stone column replacement methods have been commonly used for improving soft ground in the nearshore. Recently, DCM (Deep cement mixing) method, which can harden soft clays by mixing with cement, is more popularly used in such soft ground improvement. Sandy soils also exist in the seashore. Therefore, in this study, the effect of salinity in sea water and curing methods on the strength of cemented sand was evaluated in terms of unconfined compressive strength (UCS). The sand was mixed with five different cement ratios and distilled water or sea water, and then compacted into a cylindrical specimen. They were cured for 3 days under sea water for DCM construction condition and air cured for onshore curing condition. When a specimen was cured under sea water without confinement, it was easily collapsed due to initiation of cracks. When the cement ratio and curing method were the same, the UCS of the specimen without sea water was at maximum 3.5 times higher than those with sea water. The sea water used for mixing sand had more influence on strength reduction than the sea water used for curing. When the cement ratio was the same, the UCS of air-cured specimen was at average 2 times higher than those of water-cured specimen, regardless of water used.

Study on the control methods of compositional ratios in co-evaporation system for SmBCO coated conductor (동시 증발 증착법을 이용한 SmBCO 초전도층 증착에서 조성비 제어 방법에 관한 연구)

  • Kim, H.S.;Ha, H.S.;Oh, S.S.;Ko, R.K.;Song, K.J.;Ha, D.W.;Kim, T.H.;Youm, D.J.;Lee, N.J.;Moon, S.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.294-294
    • /
    • 2008
  • 동시 증발 증착법 화합물의 구성원자를 독립적으로 증발시켜서 기판에 증착하는 방법이다. 각 물질은 온도에 따른 증기압을 가지는데 각 물질의 온도를 조절하여 증착률을 조절한다. 보트에서 떠난 원자가 기판에 도달할 확률은 챔버의 진공도, 보토와 기판과의 거리 등에 의하여 영향을 받는다. 진공도가 나쁠수록, 보트와 기판과의 거리가 멀수록 기판에 도달할 확률이 떨어진다. 동시증발 증착법을 이용한 SmBCO 초전도층 증착에서 각 물질의 기판에 도달하는 원자비를 조절하기 위하여 QCM(증착률 측정장치), QCM 가이드를 사용하였다. QCM sensor 입구에 튜브형태의 QCM 가이드를 설치하고 QCM 가이드가 특정한 물질의 증발보트를 향하도록 배치하였다. 따라서 각 보트에서 떠난 원자들은 특정한 QCM sensor에 도달하게 되고 결국 3원소(Sm, Ba, Cu)의 증착률의 비를 조절함으로써 조성비를 조절할 수 있게 된다. QCM 증착률의 비와 실제 조성비는 여러 가지 변수에 의하여 영향을 받는 다. 대표적인 변수는 챔버의 진공도, QCM 가이드의 직경 및 길이, QCM 센서와 보트와의 거리 등이 있다. 진공도가 높을수록 특정 보트에서 떠난 원자들이 QCM 가이드 입구에 도달할 확률이 낮아지고, QCM 가이드의 직경이 좁을수록 가이드 내벽에 흡착될 확률이 높아진다. 또한 QCM센서와 보트와의 거리가 멀수록 챔버내 잔류가스의 원자들과 충돌확률이 높아지므로 도달확률이 줄어들게 된다. 동시 증발 증확법에서 조성비의 재현성을 높이기 위해서는 매회 증착실험에서 진공도가 일정해야 하며, QCM 가이드와 보트와의 거리를 되도록 최소화 하고, QCM 직경을 크게 하는 것이 유리하다.

  • PDF

Dynamic Characteristics of Railway Structures under High-Speed Train Loading (고속열차 주행 시 동적하중을 받는 철도구조물의 진동 특성)

  • Rhee, Inkyu;Kim, Jae Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.2
    • /
    • pp.121-128
    • /
    • 2020
  • The purpose of this study is to investigate the distribution patterns of displacement and acceleration fields in a nonlinear soil ground based on the interaction of high-speed train, wheel, rail, and ground. For this purpose, a high-speed train in motion was modeled as the actual wheel, and the vertical contact of wheel and rail and the lateral contact, caused by meandering motion, were simulated; this simulation was based on the moving mass analysis. The soil ground part was given the nonlinear behavior of the upper ground part by using the modified the Drucker-Prager model, and the changes in displacement and acceleration were compared with the behavior of the elastic and inelastic grounds. Using this analysis, the displacement and acceleration ranges close to the actual ground behavior were addressed. Additionally, the von-Mises stress and equivalent plastic strain at the ground were examined. Further, the equivalent plastic and total volumetric strains at each failure surface were examined. The variation in stresses, such as vertical stress, transverse pressure, and longitudinal restraint pressure of wheel-rail contact, with the time history was investigated using moving mass. In the case of nonlinear ground model, the displacement difference obtained based on the train travel is not large when compared to that of the elastic ground model, while the acceleration is caused to generate a large decrease.

A Study on the Applicability of Ultrasonic to Improve Quality of Fuel Blended in Vessels (선내 제조된 혼합연료 품질 개선을 위한 초음파 적용 가능성에 관한 연구)

  • Choi, Jung-Sik;Ju, Hae-Ji;Han, Won-Heui
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.1
    • /
    • pp.98-103
    • /
    • 2017
  • In this study, contributes to improving the state of this problem using cavitation by ultrasonic energy to reduce fuel costs, which take up a considerable part of ship operation costs, by making the use of on-board blended fuel oil more stable. An experiment simulating on-board blending methods was completed. Fuel (M.G.O & MF-180) was mixed at a volume ratio of 0.25:0.75 and, 0.75:0.25, and the effect of ultrasonic energy on blended fuel oil was examined after applying ultrasonic energy to blended fuel oil using an ultrasonic treatment unit. With the results, we confirmed the blending problem reported by vessels and residual carbon was reduced by up to 28.4%. In addition, based on the results for reduction of residual carbon content and dispersion stability, it was confirmed that the collapse pressure of the cavity due to the ultrasonic energy was effective to atomization of fuel particle and the temporary availability of mixed fuel containing a heavy fuel increased.

The study on the effect of fracture zone and its orientation on the behavior of shield TBM cable tunnel (단층파쇄대 규모 및 조우 조건에 따른 전력구 쉴드 TBM 터널의 거동 특성 분석)

  • Cho, Won-Sub;Song, Ki-Il;Kim, Kyoung-Yul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.4
    • /
    • pp.403-415
    • /
    • 2014
  • Recently, the temperature rise in the summer due to climate change, power usage is increasing rapidly. As a result, power generation facilities have been newly completed and the need for ultra-high-voltage transmission line for power transmission of electricity to the urban area has increased. The mechanized tunnelling method using a shield TBM have an advantage that it can minimize vibrations transmitted to the ground and ground subsidence as compared with the conventional tunnelling method. Despite the popularity of shield TBM for cable tunnel construction, study on the mechanical behavior of cable tunnel driven by shield TBM is insufficient. Thus, in this study, the effect of fractured zone ahead of tunnel face on the mechanical behavior of the shield TBM cable tunnel is investigated. In addition, it is intended to compare the behavior characteristics of the fractured zone with continuous model and applying the interface elements. Tunnelling with shield TBM is simulated using 3D FEM. According to the change of the direction and magnitude of the fractured zone, Sectional forces such as axial force, shear force and bending moment are monitored and vertical displacement at the ground surface is measured. Based on the stability analysis with the results obtained from the numerical analysis, it is possible to predict fractured zone ahead of the shield TBM and ensure the stability of the tunnel structure.

Characterization of Crack Healing of Si3N4 Ceramic Structures According to Crack Length and Coating Methods (균열 길이와 코팅방법에 따른 Si3N4의 균열 치유 특성)

  • Nam, Ki-Woo;Moon, Chang-Kwon;Park, Sang-Hyun;Eun, Kyung-Ki;Kim, Jong-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1715-1720
    • /
    • 2010
  • In this study, we analyzed the crack-healing characteristics of specimens; different crack lengths and coating methods of $Si_3N_4$ ceramic structures with long cracks were analyzed. Cracks with lengths of about $100-500\;{\mu}m$ were obtained using a Vickers indenter for a load of 24.5-98 N. In the case of a crack obtained by applying a load of 24.5 N, the crack-healed specimen with $SiO_2$ nanocolloid coating exhibited the highest bending strength, which was higher than that of a smooth specimen by 140%, but the bending strength of a crack-healed specimen that had a $SiO_2$ nanocolloid coating and originally had multiple cracks was lower than that of a smooth specimen. However, when compared to the cracked specimens, the bending strength of most specimens with multiple cracks increased slightly. On the basis of these results, the crack-healing characteristics of $Si_3N_4$ ceramic structures with multiple indentations were studied for different coating methods. The most effective coating method for long-crack specimens was hydrostatic pressure coating.