• Title/Summary/Keyword: 압축강도 예측

Search Result 451, Processing Time 0.031 seconds

Compressive Strength Characteristics of Light-weight Air Foamed Soil Using Dredged Silty Soils (준설 실트질 점토를 이용한 경량기포혼합토의 압축강도 특성)

  • Kim, Donggyu;Yoon, Yeowon;Yoon, Gillim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.5
    • /
    • pp.27-33
    • /
    • 2017
  • In this research, laboratory tests were carried out to investigate the engineering properties of Light-Weight Air Foamed Soil (LWAS) based on silty clays with the animal foaming agent and cement. LWAS has been used as an embankment material over soft ground for road and side extension of the existing road. In field, unit weight and flow value is measured right after producing in mixing plant in order to control the quality of LWAS, and laboratory tests are carried out to confirm the quality through compressive strength of LWAS as well. In this research, direct estimation of the specification requirement of strength using flow values in field is the main purpose of the study together with other characteristics. From the test results, it can be seen that flow values increase with the initial water content and unit weight increases with the depth due to material segregation. Compared to the upper specimen, lower end of 60 cm specimen shows about 2 times higher compressive strength. Relationship between flow values and normalized factor presented by Yoon & Kim (2004) was presented. With that relationship, compressive strength can be predicted from flow values in field. From the relationship, the normalized factor was calculated. Thereafter calculated compressive strengths according to the flow values were compared to measured strengths in the laboratory. The higher the initial water content of the dredged soil has, the better relationship between predicted and measured shows. Therefore it is necessary to predict the compressive strength in advance through the relationship between the flow value and the normalized factor to reflect it in the design stage.

Probabilistic Neural Network for Prediction of Compressive Strength of Concrete (콘크리트 압축강도 추정을 위한 확률 신경망)

  • Kim, Doo-Kie;Lee, Jong-Jae;Chang, Seong-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.159-167
    • /
    • 2004
  • The compressive strength of concrete is a criterion to produce concrete. However, the tests on the compressive strength are complicated and time-consuming. More importantly, it is too late to make improvement even if the test result does not satisfy the required strength, since the test is usually performed at the 28th day after the placement of concrete at the construction site. Therefore, strength prediction before the placement of concrete is highly desirable. This study presents the probabilistic technique for predicting the compressive strength of concrete on the basis of concrete mix proportions. The estimation of the strength is based on the probabilistic neural network which is an effective tool for pattern classification problem and gives a probabilistic result, not a deterministic value. In this study, verifications for the applicability of the probabilistic neural networks were performed using the test results of concrete compressive strength. The estimated strengths are also compared with the results of the actual compression tests. It has been found that the present methods are very efficient and reasonable in predicting the compressive strength of concrete probabilistically.

Modeling on Compressive Strength in High Performance Concrete Using Porosity (공극률을 이용한 고성능 콘크리트의 압축강도 특성 모델링)

  • Lee, Hack Soo;Kwon, Seung Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.124-133
    • /
    • 2012
  • Compressive strength in concrete increases with time. Regression analysis with time is conventionally performed for strength evaluation and prediction. In this study, hydrate amount is assumed as a function of hydration rate and porosity, and modeling on compressive strength is carried out considering decreasing porosity with time, which does not need the regression analysis with time. For twenty one mix proportions of HPC (High Performance Concrete), DUCOM (FE program) which can simulate the behavior in early aged concrete is utilized, and porosity from each mix proportions is obtained with time. For HPC with OPC (Ordinary Portland Cement) concrete, modeling on compressive strength is performed considering hydration rate, unit content of cement, and porosity with time. For HPC with mineral admixtures, a long-term parameter which can handle long-term strength development is additionally considered. From the comparison with the previous test results, the applicability of the proposed model is verified.

A Study on the Development of Strength Prediction Model and Strength Control for Construction Field by Maturity Method (적산온도 방법에 의한 강도예측모델 개발 및 건설생산현장에서의 강도관리에 관한 연구)

  • Kim, Moo-Han;Jang, Jong-Ho;Nam, Jae-Hyun;Khil, Bae-Su;Kang, Suk-Pyo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.87-94
    • /
    • 2003
  • Construction plan and strength control have limitations in construction production field because it is difficult to predict the form removal strength and development of specified concrete strength. However, we can have reasonable construction plan and strength control if prediction of concrete strength is available. In this study, firstly, the newly proposed strength prediction model with maturity method was compared with the logistic model to test the adaptability. Secondly, the determination of time of form removal was verified through the new strength prediction model. As the results, it is found that investigation of the activation energy that are used to calculate equivalent age is necessary, and new strength prediction model was proved to be more accurate in the strength prediction than logistic model in the early age. Moreover, the use of new model was more reasonable because it has low SSE and high decisive factor. If we adopt new strength prediction model at construction field, we can expect the reduced period of work through the reduced time of form removal.

An Experimental Study on the Shear Strength of Reinforced High Strength Concrete Beams without Stirrups (스터럽이 없는 고강도 철근콘크리트보의 전단강도 특성에 관한 실험적 연구)

  • 김진근;박연도
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.1
    • /
    • pp.103-113
    • /
    • 1993
  • 일반적으로 스터럽이 없는 철근콘크리트 보의 전단강도는 콘크리트 압축강도, 주철근비, 전단스팬비 및 보 유효깊이에 좌우된다는 것이 많은 연구를 통하여 밝혀지고 있다. 따라서, 본 연구에서는 고강도 콘크리트를 사용한 철근콘크리트 보의 거동 및 전단강도 특성을 분석하기 위하여 주철근비, 전단스팬비 및 보 유효깊이를 변수로 두고 총 22개의 단철근 보 실험체를 제작하여 실험을 수행하였다. 실험결과는 ACI규준식, Zsutty식 및 Bazant & Kim식의 예측값들과 함께 비교, 분석되었는데, ACI 규준식은 주철근비 및 전단스팬비의 효과를 과소평가할 뿐만 아니라 유효깊이가 915mm인 큰 보의 경우 안전측이 아니어서 이에 대한 고려가 필요할 것으로 판단된다. Zsutty식은 주철근비의 효과를 적절하게 평가하는 것으로 나타났으며, Bazant & Kim 식은 유효깊이 증가에 따른 전단강도 감소 경향을 잘 예측하는 것으로 나타났다. 또한, 다른 연구자들의 실험치와 비교, 분석해본 결과 주철근비 및 전단스팬비의 효과는 콘크리트 압축강도 수준에 따라 큰 변화가 없는 것으로 판단된다.

Estimation of Concrete Strength Based on 7-day Strength (콘크리트의 7일강도를 이용한 28일 강도의 추정)

  • 김선영;권태수;이수곤
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.1
    • /
    • pp.119-124
    • /
    • 1998
  • 콘크리트는 시멘트, 잔골재 및 굵은 골재, 물 및 첨가제의 양이나 투입순서 ,혼합방법등 여러 가지 요인에 따라 성질이 바뀌게 되는 복합재료이다. 따라서 넓은 의미에서 품질 판정의 한 수단이 되는 콘크리트의 설계기준강도 또는 압축강도 fc'(=28일 압축강도)는 물론 기타의 성질도 정확한 예측이 불가능하다. 즉 소요강도를 목표로 배합된 공시체의 시험결과는 예외없이 통계적 가변성을 나타낸다. 여기에서는 공시체의 7일 강도의 평균치 및 표준 편차와 공시체의 28일 강도 측정치로부터 콘크리트의 압축강도를 추정하는식을 제안하였다. 이를 위하여 7,320개의 강도시험자료를 수집한 후 이들을 선형 회귀 분석법으로 처리하였다. 제안된 식에 의한 콘크리트의 압축강도는 타 추정식에 의한 값보다 실측치에 좀 더 근접함을 보여주었다. 또한 제안식의 검정을 위해 서울지역 자료 5,200개를 수집하여 제안식과 JIS, Slater식과의 오차를 비교한 결과에 따르면 제안식이 더 안전측임을 알 수 있었다. 그리고 슈미트 햄머에 의한 현장 실측 강도와 제안식과의 콘크리트 강도 오차는 대체로 2.3%이었다.

Size Effect for Flexural Compressive Strength of Concrete (콘크리트의 휨 압축강도의 크기효과)

  • Kim, Jin-Keun;Yi, Seong-Tae;Yang, Eun-Ik
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.157-165
    • /
    • 1999
  • When the ultimate strength of a concrete flexural member is evaluated, the effect of member size is usually not considered. For various types of loading, however, the strength always decreases with the increment of member size. In this paper the size effect of a flexural compression member is investigated by experiments. For this purpose, a series of C-shaped specimens subjected to axial compressive load and bending moment was tested using three different sizes of specimens with a compressive strength of 528 kg/$cm^2$. According to test results the size effect on flexural compressive strength was apparent, and more distinct than that for uniaxial compressive strength of cylinders. Finally a model equation was derived using regression analyses with experimental data.

Prediction of Compressive Strength of Fly Ash Concrete by a New Apparent Activation Energy Function (새로운 겉보기 활성에너지 함수에 의한 플라이애시 콘크리트의 압축강도 예측)

  • 한상훈;김진근;박연동
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.3
    • /
    • pp.237-243
    • /
    • 2001
  • The prediction model is proposed to estimate the variation of compressive strength of fly ash concrete with aging. After analyzing the experimental result with the model, the regression results are presented according to fly ash replacement content and water-cement ratio. Based on the regression results, the influence of fly ash replacement content and water-cement ratio on apparent activation energy was investigated. According to the analysis, the model provides a good estimate of compressive strength development of fly ash concrete with aging. As the fly ash replacement content increases, the limiting relative compressive strength and initial apparent activation energy become greater. The concrete with water-cement ratio smaller than 0.40 shows that the limiting relative compressive strength and apparent activation energy are nearly constant according to water-cement ratio. But, the concrete with water-cement ratio greater than 0.40 has the increasing limiting relative compressive strength and apparent activation energy with increasing water-cement ratio.

Numerical Web Model for Quality Management of Concrete based on Compressive Strength (압축강도 기반의 콘크리트 품질관리를 위한 웹 전산모델 개발)

  • Lee, Goon-Jae;Kim, Hak-Young;Lee, Hye-Jin;Hwang, Seung-Hyeon;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.3
    • /
    • pp.195-202
    • /
    • 2021
  • Concrete quality is mainly managed through the reliable prediction and control of compressive strength. Although related industries have established a relevant datasets based on the mixture proportions and compressive strength gain, whereas they have not been shared due to various reasons including technology leakage. Consequently, the costs and efforts for quality control have been wasted excessively. This study aimed to develop a web-based numerical model, which would present diverse optimal values including concrete strength prediction to the user, and to establish a sustainable database (DB) collection system by inducing the data entered by the user to be collected for the DB. The system handles the overall technology related to the concrete. Particularly, it predicts compressive strength at a mean accuracy of 89.2% by applying the artificial neural network method, modeled based on extensive DBs.

Effective Compressive Strength of Corner Columns with Intervening Normal Strength Slabs (일반강도 슬래브로 간섭받은 모서리 기둥의 유효압축강도)

  • Lee, Joo-Ha
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.122-129
    • /
    • 2015
  • In this study, a prediction model for the effective compressive strength of corner columns with intervening normal strength concrete slabs was developed. A structural analogy between high-strength concrete column-normal strength concrete slab joint and brick masonry was used to develop the prediction model. In addition, the aspect ratio of slab thickness to column dimension was considered in the models. The reliability of the new prediction model was evaluated by comparison with experimental results and its superiority was demonstrated by comparison with previous models proposed by design codes and other researchers. As a result, with average test-to-predicted ratios of 1.09, a standard deviation of 0.15, the newly developed equation provided superior predictions in terms of accuracy and consistency over all of the existing effective strength prediction approaches including KCI structural concrete design code (2012).