• Title/Summary/Keyword: 압전패치

Search Result 5, Processing Time 0.016 seconds

A Study on Frequency Shift of Piezo Microstrip Antennas (피에조 마이크로스트립 안테나의 주파수 이동에 관한 연구)

  • Kang, Hyunil;Joung, Yeun-Ho;Hwang, Hyun Suk;Lim, Yun-Sik;Yu, Young Sik;Song, Woochang;Lee, Jongsung
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.22-25
    • /
    • 2012
  • In this paper, we proposed a method of the resonant frequency shift of a microstrip patch antenna using $LiNbO_3$, PVDF and FR-4 substrates. We designed and analyzed from these parametars optimized using Ensemble V 7.0 of the simulation tool. We observed the resonant frequency by DC appled electric field in a microstrip patch antenna. When $LiNbO_3$ substrate were applied from -300 to 300 V/mm, we obtained the resonant frequency shift of maximum 29 MHz. The microstrip patch antenna with PVDF (poly vinylidene fluoride) substrate, we obtained the resonant frequency shift of maximum 17 MHz at frequency 6 GHz. but when Epoxy FR-4 substrates used, the resonant frequency does not changed. This results showed the resonant frequency shift without physical strains in a microstrip patch antenna.

Maximization of the Output Voltage of a Cantilevered Energy Harvester Comprising Piezoelectric Fiber Composites (압전섬유복합재 외팔보 에너지 회수장치의 출력전압 최대화)

  • Kim, Seon-Myeong;Kim, Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.805-812
    • /
    • 2011
  • In this study, a cantilevered energy harvester comprising piezoelectric fiber and epoxy composites was designed and analyzed electro-mechanically. In order to maximize the power of the cantilevered energy harvester, its exciting frequency was tuned to the first natural frequency of the beam. An efficient analysis method for predicting the output voltage of the beam was developed by using the finite element method coupled with piezoelectric behavior. By using this method, the effects of geometric parameters and various piezoelectric materials on power generation were investigated and the electric characteristics were evaluated. Design optimization of the beam geometries was performed for a base model. The optimum MFC design generated a maximum electric output of 40.1 V at a first natural frequency of 24.5 Hz.

Development of Ultrasonic Active Fiber Sensor for Structural Health Monitoring (구조물 안전진단을 위한 초음파능동형광섬유 센서의 개발)

  • Lim, Seung-Hyun;Lee, Jung-Ryul;Oh, Il-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.747-752
    • /
    • 2008
  • Fiber-guided sensor system using a generator and a receiver can detect the amplitude of load or pressure. However, this type of sensor can show some difficulties in detecting the location of damages and pressure loadings. To overcome this weakness of this type, the ultrasonic active fiber sensor, which has an integrated ultrasonic generator and sensing part, was developed in this study. By using this sensor system, the location of mechanical loads can be exactly detected. Moreover, the ultrasonic active fiber sensor is more cost-effective than an ultrasonic fiber sensor using two piezoelectric transducers which are used as a generator and a receiver, respectively. Two applications of the ultrasonic active fiber sensor are demonstrated: cure monitoring of lead and measurement of liquid level. Present results showed that the active fiber sensor can be applied for various environmental sensing.

  • PDF

Detection of a Crack on a Plate by IDT Type Lamb Wave Sensors (IDT형 Lamb 파 센서에 의한 판상의 균열 검출)

  • Kim, Jun-Ho;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.8
    • /
    • pp.483-490
    • /
    • 2010
  • In this paper, an Inter-Digital Transducer (IDT) type Lamb wave sensor is proposed to estimate the geometry and number of cracks on a plate structure, and its validity is checked through experiments. This IDT type sensor is more readily controllable than conventional patch type piezoelectric sensors to modify its operation frequency and directionality by altering its finger patterns. In this work, omni-directional annular IDT and highly directional rectangular IDT sensors are designed and fabricated. The IDT sensors are used to diagnose the length, number and orientation of cracks on an aluminum plate by measuring the amplitude and time of flight of Lamb waves. The results are analyzed to discuss the efficacy of the IDT sensors.