• 제목/요약/키워드: 압저항형 가속도계

검색결과 2건 처리시간 0.018초

에어백용 압저항형 외팔보 미소 가속도계의 설계, 제작 및 시험 (Design, Fabricaiton and Testing of a Piezoresistive Cantilever-Beam Microaccelerometer for Automotive Airbag Applications)

  • 고종수;조영호;곽병만;박관흠
    • 대한기계학회논문집A
    • /
    • 제20권2호
    • /
    • pp.408-413
    • /
    • 1996
  • A self-diagnostic, air-damped, piezoresitive, cantilever-beam microaccelerometer has been designed, fabricated and tested for applications to automotive electronic airbag systems. A skew-symmetric proof-mass has been designed for self-diagnostic capability and zero transverse sensitivity. Two kinds of multi-step anisotropic etching processes are developed for beam thickness control and fillet-rounding formation, UV-curing paste has been used for sillicon-to-glass bounding. The resonant frequency of 2.07kHz has been measured from the fabricated devices. The sensitivity of 195 $\mu{V}$/g is obtained with a nonlinearity of 4% over $\pm$50g ranges. Flat amplitude response and frequency-proportional phase response have been obserbed, It is shown that the design and fabricaiton methods developed in the present study yield a simple, practical and effective mean for improving the performance, reliability as well as the reproducibility of the accelerometers.

고충격 미소가속도계의 압저항-구조 연성해석 및 최적설계 (Piezoresistive-Structural Coupled-Field Analysis and Optimal Design for a High Impact Microaccelerometer)

  • 한정삼;권순재;고종수;한기호;박효환;이장우
    • 한국군사과학기술학회지
    • /
    • 제14권1호
    • /
    • pp.132-138
    • /
    • 2011
  • A micromachined silicon accelerometer capable of surviving and detecting very high accelerations(up to 200,000 times the gravitational acceleration) is necessary for a high impact accelerometer for earth-penetration weapons applications. We adopted as a reference model a piezoresistive type silicon micromachined high-shock accelerometer with a bonded hinge structure and performed structural analyses such as stress, modal, and transient dynamic responses and sensor sensitivity simulation for the selected device using piezoresistive-structural coupled-field analysis. In addition, structural optimization was introduced to improve the performances of the accelerometer against the initial design of the reference model. The design objective here was to maximize the sensor sensitivity subject to a set of design constraints on the impact endurance of the structure, dynamic characteristics, the fundamental frequency and the transverse sensitivities by changing the dimensions of the width, sensing beams, and hinges which have significant effects on the performances. Through the optimization, we could increase the sensor sensitivity by more than 70% from the initial value of $0.267{\mu}V/G$ satisfying all the imposed design constraints. The suggested simulation and optimization have been proved very successful to design high impact microaccelerometers and therefore can be easily applied to develop and improve other piezoresistive type sensors and actuators.