• Title/Summary/Keyword: 압연재

Search Result 74, Processing Time 0.02 seconds

Prediction of Cryogenic- and Room-Temperature Deformation Behavior of Rolled Titanium using Machine Learning (타이타늄 압연재의 기계학습 기반 극저온/상온 변형거동 예측)

  • S. Cheon;J. Yu;S.H. Lee;M.-S. Lee;T.-S. Jun;T. Lee
    • Transactions of Materials Processing
    • /
    • v.32 no.2
    • /
    • pp.74-80
    • /
    • 2023
  • A deformation behavior of commercially pure titanium (CP-Ti) is highly dependent on material and processing parameters, such as deformation temperature, deformation direction, and strain rate. This study aims to predict the multivariable and nonlinear tensile behavior of CP-Ti using machine learning based on three algorithms: artificial neural network (ANN), light gradient boosting machine (LGBM), and long short-term memory (LSTM). The predictivity for tensile behaviors at the cryogenic temperature was lower than those in the room temperature due to the larger data scattering in the train dataset used in the machine learning. Although LGBM showed the lowest value of root mean squared error, it was not the best strategy owing to the overfitting and step-function morphology different from the actual data. LSTM performed the best as it effectively learned the continuous characteristics of a flow curve as well as it spent the reduced time for machine learning, even without sufficient database and hyperparameter tuning.

Development of On-line Monitoring System for Shape Memory Alloy Composite (형상기억복합재료에 대한 온라인 모니터링 시스템 개발)

  • Lee, Jin-Kyung;Park, Young-Chul;Lee, Min-Rae;Lee, Dong-Hwa;Lee, Kyu-Chang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.1
    • /
    • pp.7-13
    • /
    • 2003
  • A hot press method was use for the optimal manufacturing condition for a shape memory alloy(SMA) composite. The bonding between the matrix and the reinforcement within the SMA composite by the hot press method was strengthened by cold rolling. In this study, the objective was to develop an on-line monitoring system for the prevention of the crack initiation and propagation by shape memory effort of SMA composite. Shape memory effect was used to prevent the SMA composite from cracking. For the system to be developed, an optimal hE parameter should be determined based on the degree of damage and crack initiation. When the SHA composite was heated by the plate heater attached at the composite, the propagating cracks appeared to be controlled by the compressive force of SMA.

Evaluation on Thermal Shock Damage of Smart Composite using Nondestructive Technique (비파괴 기법을 이용한 스마트 복합재료의 열충격손상평가)

  • Lee, Jin-Kyung;Park, Young-Chul;Lee, Kyu-Chang;Lee, Joon-Hyun
    • Composites Research
    • /
    • v.20 no.3
    • /
    • pp.37-42
    • /
    • 2007
  • Tensile residual stress is occurred by difference of coefficients of thermal expansion between fiber and matrix is one of the serious problems in metal matrix composite(MMC). TiNi alloy fiber was used to solve the problem of the tensile residual stress as the reinforced material. TiNi alloy fiber improves the tensile strength of composite with occurring of compressive residual stress in the matrix by its shape memory effect. A hot press method was used to create the optimal fabrication condition for a Shape Memory Alloy(SMA) composite. The bonding effect of the matrix and the reinforcement within the SMA composite by the hot press method was strengthened by cold rolling. In addition, acoustic emission technique was used to quantify the microscopic damage behavior of cold rolled TiNi/A16061 shape memory alloy composite at low temperature. The damage degree for the specimen that underwent thermal shock cycles was also discussed.

가공용 마그네슘합금의 연속제조 및 압출가공

  • Yu, Bong-Seon;Im, Chang-Dong;Kim, Yeong-Min
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.18.1-18.1
    • /
    • 2011
  • 가공용 마그네슘합금 중간재를 저비용으로 제조하는 공정기술의 하나인 수평연속주공정을 통해 판재 및 빌렛을 제조하는 공정에 대한 연구결과를 소개하고자 한다. 수평연속주조공정은 기존의 반연속주조공정에 비해 저비용 공정이며, 실용화 초기단계에 있는 제조공정인 strip casting으로는 제조가 불가능한 고합금계의 마그네슘 중간재를 제조할 수 있는 공정기술이다. 또한 연속주조한 빌렛의 압출공정에서 압출속도를 향상시킴으로써 미세조직을 제어하고 제조 비용을 절감하기 위한 연구로서 고속압출용 신합금 설계기술과 압출공정제어에 대한 연구결과를 소개하고자 한다.

  • PDF

Forged Product Characteristic and Cold Rolling Simulation for High-Nitrogen Stainless Steel (HNS) (TP304계 고질소 스테인레스강의 단조특성과 냉간압연 모사)

  • Lee, M.R.;Lee, J.W.;Kim, B.K.;Kim, Y.D.;Shin, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.310-313
    • /
    • 2009
  • Several high nitrogen stainless steel ingots(100kg) were fabricated with changing Ni and $[N]_2$ contents by Pressurized Vacuum Induction Melting(P_VIM). After free forging process, chemical compositions, microstructure and mechanical properties were estimated. Hardness was increased with the increase of $[N]_2$ content. Furthermore, microstructure including a lot of tempering twins was observed with optical microscope. Mechanical properties were estimated as function of solution treatment temperature and cooling method(air/water) under duration time of 1 hr on sample that were fabricated with Ni content under the atmospheric $[N]_2$ pressure. At solution treatment range of $1050{\sim}1100^{\circ}C$, hardness was decreased with the increase of solution temperature and there were little discrepancy of microstructure and hardness with cooling method. Computer simulation was carried out in order to inspect pass schedule in cold rolling process. When the condition of simulation was roll speed of 2.5mpm, rolling rate $15{\sim}17%$ per pass, it was ascertained that the formation such as deformation by sticking and lamellar sliver etc. was restricted from a simulation.

  • PDF

A Study on Improvement of Durability for Run-out Table Roller with Hot Rolling by Porous Self-fluxing Alloy Coating (다공질 자용성 합금 피복에 의한 열간 압연용 런-아웃 테이블 롤러의 내구성 향상에 관한 연구)

  • Bae, Myung-Whan;Park, Byoung-Ho;Jung, Hwa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.276-285
    • /
    • 2012
  • The objective of this research is to develop the coating technique by a porous self-fluxing alloy for improving the mechanical properties of run-out table roller surface with the hot rolling. To enhance the durability of run-out table roller with the hot rolling, the high hardness of roller surface should be maintained at high temperatures, and the improvement of wear resistance, corrosion resistance, heat resistance, burn resistance and adhesion resistance should be maintained. In order to be able to transport reliably a hot rolled steel sheet, also, the appropriate friction coefficient on the roller surface should be maintained and the slip between roller and steel should not occur. In this study, the wear resistance of roller increases after the self-fluxing alloy is changed to a cermet by adding the tungsten carbide(WC), and the coefficient of friction increases and the ability of grip is improved because the porosities are made by coating with fine iron powder on the roller surface. As a result, it is found that the ability of grip between the steel and the roller coated by a porous self-fluxing alloy contained to 5 ~ 10 wt% of Fe in the coating layer is improved compared to the roller coated by Ni-Cr. This is because the porosities are made after Fe contained in the roller is partially alloyed by heating with a furnace in the fusing process and the rest is eliminated by oxidation and dissolution.

A Study on the Characteristics of High Tensile Strength Steel(SM570) Plates in Compression Members (고장력(SM570)강재의 압축재 특성에 관한 연구)

  • Im, Sung-Woo;Ko, Sang-Ki;Chang, In-Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.3
    • /
    • pp.223-232
    • /
    • 2001
  • Column tests subjected to compressive loading were carried out for the estimation of compression buckling strength of steel plate SM570 in beam-column member under high axial load. It was found that the maximum strength of column member was determined by local buckling when satisfied with a limit of width-to-thickness ratio in current steel structure design specifications, but decreased suddenly by local buckling before the maximum strength in case of not satisfying with that ratio. Also, the compression buckling strength of SM570 plate was higher than the design specification value of 4$4.1tonf/cm^2$.

  • PDF

Strengthening of shear resistance of masonry walls (조적벽체의 전단강도 향상 방안에 관한 연구)

  • Kang, Sung-Hun;Hong, Sung-Gul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.193-196
    • /
    • 2008
  • This paper presents an experimental study to investigate enhanced performance of the masonry walls strengthened in shear and ductility using honeycomb steel mesh. The performance of masonry walls strengthened with steel mesh will compare with unreinforced masonry walls to show the performance of reinforced masonry walls. According to the experiment, it is expected that this system is effective to enhance the shear strength and ductility of the masonry walls.

  • PDF

The Study on the Microstructure and Mechanical Properties of the Nodular Indefinite Chilled Iron Containing Ni (Ni 함유 NICI(Nodular Indefinite Chilled Iron)의 미세조직과 기계적성질에 관한 연구)

  • Baek, Eung-Ryul;Oh, Seok-Jung;Villando, Thursdiyanto
    • Journal of Korea Foundry Society
    • /
    • v.26 no.4
    • /
    • pp.180-183
    • /
    • 2006
  • The effects of adding Ni on microstructure and mechanical properties of Nodular Indefinite Chilled Iron (NICI) were studied. Thermal fatigue, hardness, tensile properties, wear resistance, are very important factors for NICI used for hot working roll and wire rod mill. The results show that addition 4% nickel has changed pearlite to bainite. Bainite matrix is superior to pearlite matrix on wear resistance, hardness and strength and will increase performance lifetime of NICI conventional roll material. Based in the bainitic microstructure, hardness and tensile property increase up to 48 HRc and $72\;kg/mm^2$, respectively.

The Effect of Austempering Treatment on Microstructure and Mechanical Properties of NICI and DCI for Rolls Used in Hot Rolling Mill (오스템퍼링 처리가 열간압연롤용 NICI재 및 DCI재의 미세조직 및 기계적 성질에 미치는 영향)

  • Kim, Jae-Jin;Oh, Seok-Jung;Yoo, Kook-Jong;Andy, Tirta;Baek, Eung-Ryul
    • Journal of Korea Foundry Society
    • /
    • v.29 no.6
    • /
    • pp.251-256
    • /
    • 2009
  • The effect of austempering treatment on mechanical properties of nodular indefinite chilled iron(NICI) and ductile cast iron(DCI) was investigated. In microstructural observation, matrix phase(pearlite and ferrite) was changed to ausferrite after austempering treatment both DCI and NICI. In case of NICI, decomposition of cementite($Fe_3C$) during austempering treatment was induced. After austempering treatment, mechanical properties such as hardness, tensile strength and impact toughness was improved in NICI and DCI. The wear resistance is slightly decreased because of decomposition of cementite during austempering treatment in NICI but impact toughness and strength is dramatically increased.