• Title/Summary/Keyword: 압력-부피 선도

Search Result 21, Processing Time 0.023 seconds

심근경색 병변에 따른 심실의 전기역학적 특성 분석

  • Baek, Dong-Geun;Im, Gi-Mu
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.656-661
    • /
    • 2017
  • 이 연구의 목적은 심근경색의 발생 위치와 그 부피에 따른 심실의 여러 가지 생리학적인 특성들을 분석하는 데에 있다. 우리는 심근경색의 발생 사례를 총 8가지로 분류하여 각 병변의 발생 위치와 부피를 달리 하였으며 대조군으로 정상 상태의 심장을 두어 기준 값으로부터 각 사례 별로 전체 심장 대비 심근경색 부위가 차지하는 비율, 압력-부피 선도, 1회 박출량(SV), 분당 심박출량(CO), ATP 소모율, 박출 효율(EF), 1주기의 1ATP 당 소모한 일의 양(SW/ATP) 등을 조사하였다. 또한 본 연구는 심근경색의 발생 위치와 부피에 따른 이의 심각성을 나타내고자 했기 때문에, 각 사례 별로 압력-부피 선도, 들의 변화율 및 세포가 괴사한 정도에 따른 수치 변화율을 퍼센트(%)로 표시하여 그 정도를 조사하였다. 심근경색을 가진 심장은 그렇지 않은 심장에 비해서, ATP 소모량이나 EF의 경우 각 사례 마다 상이한 결과를 가지기는 하지만, 대체적으로 더 적은 1주기 일량(SW) 및 1회 박출량(SV) 분포를 보였으며 SW/ATP의 값은 거의 일괄적으로 감소하였음을 확인하였는데, 이는 심실의 효율이 정상 심장에 비해서 떨어졌음을 의미한다. 결과적으로, 본 연구는 심근경색의 생리학적 특징들을 재확인함과 동시에 임상적으로 확인할 수 없는 특징들의 수학적인 분석과 더불어 심근경색의 공간 특징적인 현상들을 밝히고 있다.

  • PDF

The Study of Students' Misconception about the Properties of Gas in Secondary School (기체의 성질에 대한 중·고등 학생들의 오개념에 관한 연구)

  • Yoo, Seung A;Koo, In Sun;Kim, Bong Gon;Kang, Dae Ho
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.5
    • /
    • pp.564-577
    • /
    • 1999
  • The purpose of this study is to help an improvement of conceptional learning about the properties of gas based on molecular kinetics for secondary school students and to help an improvement of teaching method for reducing misconceptions regarding the molecular kinetics in gas phase for teachers. The subjects of this study were l00 students of 9th grade and 150 students of 11th grade students. The results showed that students had various misconceptions about the properties of gas. The major misconceptions are as follows. First, the energy is released due to the collision of the molecules, and also the direction of action of pressure is related to the direction of gravity. Second, as molecule is heated, the size of molecule is increased, and the molecule is more active because the number of moIecules is increased. Third, the pressure is reduced because of decreasing the temperature at the higher altitude and the pressure of gas molecuIes is inversely proportional to the collision number of gas molecules. Forth, the numbers of molecules of two different molecules in two same containers differ because the size of molecules differ each other. The results suggest that these problems ought to be addressed in chemistry textbooks and in the classroom teaching of chemistry. If teachers are more aware of students' misconceptions they wilI be better able to remove them.

  • PDF

Isotropic Compression Behavior of Lawsonite Under High-pressure Conditions (로소나이트(Lawsonite)의 압력에 따른 등방성 압축거동 연구)

  • Im, Junhyuck;Lee, Yongjae
    • Economic and Environmental Geology
    • /
    • v.49 no.1
    • /
    • pp.23-30
    • /
    • 2016
  • Powder samples of natural lawsonite (Ca-lawsonite, $CaAl_2Si_2O_7(OH)_2{\cdot}H_2O$) was studied structurally up to 8 GPa at room temperature using monochromatic synchrotron X-ray powder diffraction and a diamond anvil cell (DAC) with a methanol : ethanol : water (16 : 3 : 1 by volume) mixture solution as a penetrating pressure transmitting medium (PTM). Upon pressure increase, lawsonite does not show any apparent pressure induced expansion (PIE) or phase transition. Pressure-volume data were fitted to a second-order Birch-Murnaghan equation of state using a fixed pressure derivative of 4 leading to a bulk modulus ($B_0$) of 146(6) GPa. This compression is further characterized to be isotropic with calculated linear compressibilities of ${\beta}^a=0.0022GPa^{-1}$, ${\beta}^b=0.0024GPa^{-1}$, and ${\beta}^c=0.0020GPa^{-1}$.

Volumetric Hydrogen Sorbent Measurement at High Pressure and Cryogenic Condition - Basic Measurement Protocols (부피법을 이용한 고압·극저온 수소 흡착량 측정 방식의 기본 원리)

  • OH, HYUNCHUL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.349-356
    • /
    • 2016
  • Volumetric capacity metrics at cryogenic condition are critical for technological and commercial development. It must be calculated and reported in a uniform and consistent manner to allow comparisons among different materials. In this paper, we propose a simple and universal protocol for the determination of volumetric capacity of sorbent materials at cryogenic condition. Usually, the sample container volume containing porous sample at RT can be directly determined by a helium expansion test. At cryogenic temperatures, however, this direct helium expansion test results in inaccurate values of the sample container volume for microporous materials due to a significant helium adsorption, resulting significant errors in hydrogen uptake. For reducing this container volume error, therefore, we introduced and applied the indirect method such as 'volume correction using a non-porous material', showing a reliable cold volume correction.

Phase Transition of Zeolite X under High Pressure and Temperature (고온 고압 환경에서 합성 제올라이트 X의 상전이 비교연구)

  • Hyunseung Lee;Soojin Lee;Yongmoon Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.1
    • /
    • pp.13-21
    • /
    • 2023
  • X-ray powder diffraction study was conducted on the bulk modulus and phase transition behavior of synthetic zeolite X under high temperature and high pressure. Water and HCO3- solution were used as a PTM. Sample was heated and pressurized up to 250 ℃ and 5.18 GPa. The change of unit cell volume and phase transition were observed by X-ray diffraction. The lattice constants and unit cell volume of zeolite X, gmelinite, natrolite, and smectite were calculated using the GSAS2 program to which Le Bail's whole powder pattern decomposition (WPPD) method was applied. The bulk modulus of each zeolite X and smectite were calculated using the EosFit program to which the Birch-Murnaghan equation was applied. The bulk modulus of zeolite X is 89(3) GPa in water run, and zeolite X is 92(3) GPa in HCO3- solution run. In both run, pressure induced hydration (PIH) occurred due to the inflow of PTM into the zeolite X framework at initial pressure. Zeolite X transited to gmelinite, natrolite, and smectite in water run. Zeolite X, however, transited to smectite in HCO3- solution run. Interzeolite transformation occurred in water run, and did not occur in HCO3- solution run, which is assumed that conflict between the environment to form zeolite and the pH of the HCO3- solution.

Elastic Behavior of Zeolite Mesolite under Hydrostatic Pressure (제올라이트 메소라이트의 수압 하 탄성특성)

  • Lee, Yong-Jae;Lee, Yong-Moon;Seoung, Dong-Hoon;Jang, Young-Nam
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.509-512
    • /
    • 2009
  • Powder diffraction patterns of the zeolite mesolite ($Na_{5.33}Ca_{5.33}Al_{16}Si_{24}O_{80}{\cdot}21.33H_2O$), with a natrolite framework topology were measured as a function of pressure up to 5.0 GPa using a diamond-anvil cell and a $200{\mu}m$-focused monochromatic synchrotron X-ray. Under the hydrostatic conditions mediated by pore-penetrating alcohol and water mixture, the elastic behavior of mesolite is characterized by continuous volume expansion between ca. 0.5 and 1.5 GPa, which results from expansion in the ab-plane and contraction along the c-axis. Subsequent to this anomalous behavior, changes in the powder diffraction patterns suggest possible reentrant order-disorder transition. The ordered layers of sodium- and calcium-containing channels in a 1:2 ratio along the b-axis attribute to the $3b_{natrolite}$ cell below 1.5 GPa. When the volume expansion is completed above 1.5 GPa, such characteristic ordering reflections disappear and the $b_{natrolite}$ cell persists with marginal volume contraction up to ca. 2.5 GPa. Further increase in pressure leads to progressive volume contraction and appears to generate another set of superlattice reflections in the $3c_{natrolite}$ cell. This suggests that mesolite in the pressure-induced hydration state experiences order-disorder-order transition involving the motions of sodium and calcium cations either through cross-channel diffusion or within the respective channels.

The characteristics of the Ringbom Stirling engine (Ringbom 스터링 엔진의 제작 및 특성 연구)

  • Lee, Sang-Won;Cho, Kyung-Chul;Won, Min-Young;Kim, Soo-Yun;Jung, Pyung-Suk
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.660-664
    • /
    • 2001
  • Ringbom Stirling engine which is a kind of low temperature difference model Stirling engine is manufactured and its characteristics are measured at some temperature differences. Pressure, displacer position and rotation speed are measured. Displacer position and rotation speed are detected by photo-sensor. The hot side of Ringbom Stirling engine is warmed by electric heater. The cold side of Ringbom Stirling engine is cooled by the air. This result may be useful for further design and manufacture of Ringbom Stirling engine. Also, it would be used as an educational material for mechanical engineering students.

  • PDF

Transient State Theory of Significant Liquid Structure applied to Water (액체구조에 관한 천이상태이론의 물에 대한 적용)

  • Pak, Hyung-Suk;Chang, Sei-Hun
    • Journal of the Korean Chemical Society
    • /
    • v.10 no.2
    • /
    • pp.91-97
    • /
    • 1966
  • The partition function for liquid water is developed according to the transient state theory of significant liquid structure proposed by Pak, Ahn and Chang. This theory assumes that the molecules may possess solid-like, transient and gas-like degrees of freedom in liquid state. Although liquid water has several special properties, for example, minimum molar volume at 4^{\circ}C$, the general theory of liquid can be applied successfully. The theoretically calculated values for thermodynamic properties at the liquid temperature range and for the critical properties are in good agreement with the observed values.

  • PDF

Technology Innovation in Kimchi Packaging for Marketing in Food Supply Chain (상품적 유통을 고려한 김치 포장의 기술혁신 현황)

  • Lee, Dong Sun;Kwon, Ho Ryoung;An, Duck Soon;Chung, Michael;Lee, Kwang Sik;Yang, Dong Jin
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.18 no.1_2
    • /
    • pp.1-8
    • /
    • 2012
  • Kimchi, a Korean fermented vegetable is packaged without pasteurization and distributed with live bacteria actively working to produce lactic acid and carbon dioxide gas in the product. The $CO_2$ production consisting of two distinct phases of initial fast and later slow rates depends on kimchi type, salt content and storage temperature. The $CO_2$ produced from kimchi is accumulated in the product package causing volume expansion and pressure buildup. The dependence of $CO_2$ production rate on salt content and storage temperature has been published formerly and can be used for estimating the package volume and pressure under a variety of storage conditions. As methods to alleviate the problems from the produced $CO_2$, package designs with controlled diffusion pinhole, high $CO_2$ permeable film or $CO_2$ absorber have been tried by several researchers. Properly designed packages adopting the device or tool were shown to have high dissolved $CO_2$ in kimchi without volume expansion and pressure buildup, giving good sensory quality with carbonic taste. Advantages and limitations of each method have been discussed.

  • PDF