Hwang, Yoojun;Byun, Jung Joo;Lee, Ju Young;Kim, Kiun
Journal of the Korean Society of Propulsion Engineers
/
v.22
no.3
/
pp.134-142
/
2018
Developing model to predict the characteristic of vented gas was vented through an orifice is presented. Simulations with models which were developed with assumptions considering heat transfer inside the vessel were conducted. Also, representative pressure and temperature were measured from experiments with the pressure vessel which is applicable to a propulsion system. Developed model were verified with comparison between calculations and experiments.
Hwang, Yoojun;Byun, Jung Joo;Lee, Ju Young;Kim, Kiun
Proceedings of the Korean Society of Propulsion Engineers Conference
/
2017.05a
/
pp.268-276
/
2017
Developing a model was carried out to predict the characteristic of a pressure vessel from which the gas was vented through an orifice. An experimental test was conducted on a pressure vessel applicable to a propulsion system so that representative pressure and temperature were measured. Simulations were conducted with models using assumptions considering heat transfer inside the vessel, and the results were compared to those from the experiment. As a result, it was found out that a proposed heat transfer model was proper to predict pressure and temperature of the vented gas comparable to the measured data.
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.7
/
pp.963-971
/
2022
Water pipeline network in local and metropolitan area is buried underground, by which it is hard to know the degree of pipe aging and leakage. In this study, assuming various sensor combinations installed in the water pipeline network, the optimal algorithm was derived by predicting the water flow rate and pressure through artificial intelligence algorithms such as linear regression and neuro fuzzy analysis to examine the possibility of detecting pipe leakage according to the data combination. In the case of leakage detection through water supply pressure prediction, Neuro fuzzy algorithm was superior to linear regression analysis. In case of leakage detection through water supply flow prediction, flow rate prediction using neuro fuzzy algorithm should be considered first. If flow meter for prediction don't exists, linear regression algorithm should be considered instead for pressure estimation.
Chung, Won Hee;Park, Giljoo;Gu, Yeong Hyeon;Kim, Sunghyun;Yoo, Seong Joon;Jo, Young-do
The Journal of Society for e-Business Studies
/
v.23
no.2
/
pp.33-47
/
2018
City gas pipelines are buried underground. Because of this, pipeline is hard to manage, and can be easily damaged. This research proposes a real time prediction system that helps experts can make decision about pressure anomalies. The gas pipline pressure data of Jungbu City Gas Company, which is one of the domestic city gas suppliers, time variables and environment variables are analysed. In this research, regression models that predicts pipeline pressure in minutes are proposed. Random forest, support vector regression (SVR), long-short term memory (LSTM) algorithms are used to build pressure prediction models. A comparison of pressure prediction models' preformances shows that the LSTM model was the best. LSTM model for Asan-si have root mean square error (RMSE) 0.011, mean absolute percentage error (MAPE) 0.494. LSTM model for Cheonan-si have RMSE 0.015, MAPE 0.668.
Park, Joon-Chul;Heo, Ki-Moo;Yoon, Sung-Hoon;Moon, Yoon-Jae;Yoo, Ho-sun;Lee, Jae Heon
Plant Journal
/
v.10
no.3
/
pp.39-44
/
2014
The gas turbine thermal efficiency has been predicted when the compressor pressure ratio increases from the previously set 13.5. Thermal efficiency has been predicted from 14.2 up to 18.2 at which the turbine work reaches its maximum value on the assumption that isentropic efficiency of the compressor and the turbine are constant using the operating data at the pressure ratio of 13.5. 35.11% of thermal efficiency has been acquired by the performance test when the pressure ratio increased to 16.2 since replacing the compressor low pressure stages. It's been approved that predicting thermal efficiency using the operating data at the pressure ratio of 13.5 is useful within 7.86% of tolerance as the figure measured by the performance test.
촉매변환기용 모노리스에서의 속도변화에 따른 압력강하를 알아보기 위하여 풍동을 제작하여 실험하였다. 200 cpsi, 300 cpsi와 400 cpsi의 모노리스 담체에 대한 압력강하를 측정하였고, 듀얼베드 형태에서의 압력강하를 알아보기 위하여 200 cpsi, 300 cpsi와 400 cpsi들 중 두 개씩 조합하여 두 모노리스 담체의 사이 간격을 변화시켜가면서 압력강하를 측정하였다. 또한 많이 사용되고 있는 촉매가 담지된 400cpsi의 모노리스를 이용하여 촉매 담지에 대한 유동의 영향을 살표보았다. 모노리스 상·하류간의 압력강하는 공극율에 상관없이 공기와 유로벽과의 접촉면적에 따라 증가한다. 실험 결과로부터 제안된 상관관계를 상용하여 모노리스 형상에 따른 압력강하를 근사적으로 예측 할 수 있다. 듀얼베드 형태에서의 압력강하는 상류부와 하류부의 개별적인 모노리스의 압력강하와 두 모노리스 사이에서의 압력강하의 합으로 볼 수 있는데, 두 모노리스 사이에서의 압력강하는 무시할 만 하였다. 따라서 듀얼베드 형태의 전체적인 압력강하는 상류부와 하류부의 개별적인 모노리스에서 생기는 압력강하만의 합으로 구할 수 있다. 촉매가 담지되지 않은 모노리스의 측정결과로부터 제안된 상관관계를 촉매가 담지된 모노리스의 압력강하를 예측하는데 사용하기 위해서는 모노리스 길이를 원래길이의 1.25배로 수정하여 사용하여야 한다.
Park, Giljoo;Kim, Young-Chan;Lee, ChangYeol;Jo, Young-do;Chung, Won Hee
Proceedings of the Korean Society of Disaster Information Conference
/
2017.11a
/
pp.360-361
/
2017
도시가스 배관의 안전을 위해 다양한 시스템이 가동되고 있지만 대부분 현장점검에 의존하는 한계점을 가지고 있다. 본 연구에서는 국내 도시가스 공급업체들 중 하나인 중부도시가스사의 실시간 배관운영 데이터를 분석해 배관의 위험을 예측한다. 배관의 압력, 출력전압, 출력전류, 방식전위, 전위값 데이터와 기타 도시가스 관련요인 데이터를 통합해 상관분석을 진행한다. 그리고 특정 공급권역의 실시간 배관 압력 데이터를 분석해 압력 수치를 예측한다. Random forest regression과 support vector regression(SVR) 알고리즘을 사용해 모델을 구성한 결과 배관 데이터의 시계열 정보를 추가한 데이터 셋과 random forest regression을 사용한 모델에서 가장 우수한 예측 성능을 보인다.
An improved method to predict preferred direction of gas in gas assisted injection molding processes is introduced. Resistance of resin flow is defined and this resistance of resin flow is not directly related to the resistance of gas flow. Pressure drop requirement was believed to be proportional to the resistance to gas flow in our previous work. Instead of using the pressure drop requirement, velocity of resin should be compared to predict the gas flow direction. This method predicts the gas flow direction from the knowledge of process variables such as resin flow length, cross section area of cavity, melt temperature, and short shot. A simulation package was used to confirm the method.
Most of fluid systems, such as P&ID in ships, power plants, and chemical plants, consist of various components. The components such as bends, tees, sudden-expansions, sudden-contractions, and orifices contribute to overall pressure loss of the system. The local pressure losses across such components are determined using a pressure loss coefficient, k-factor, in lumped parameter models. In many engineering problems Idelchik's k-factor models have been used to estimate them. The present work compares the k-factor based on CFD calculation against Idelchik's model in order to confirm whether a commercial CFD package can be used for pressure loss coefficient estimation of complex geometries. The results show that RSM is the best appropriate for evaluating pressure loss coefficient. Commercial CFD package can be used as a tool evaluating k-factor even though the accuracy is influenced by a turbulence model.
Journal of the Korea Academia-Industrial cooperation Society
/
v.16
no.9
/
pp.5763-5768
/
2015
A relief valve is a mechanical element to keep safety by controlling high pressure. Usually, the high pressure is relieved by using the spring force and letting the fluid to flow from another way out of system. When its normal pressure is reached, the relief valve can return to initial state. The relief valve should be designed for smooth operation and should satisfy the structural safety requirement under operating condition. The commercial software ANSYS/WORKBENCH is utilized for flow and structural analysis. Very high pressure may cause structural problem due to severe stress. The study suggests the design satisfying the structural design requirement
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.