• Title/Summary/Keyword: 압력 변동

Search Result 430, Processing Time 0.029 seconds

MPC based path-following control of a quadcopter drone considering flight path and external disturbances in MATLAB/Simulink (MATLAB/Simulink 기반 주행 경로와 외란을 고려한 쿼드콥터 드론의 모델 예측 제어 기반 경로 주행 제어)

  • Soon-Jae Gwon;Gu-Min Jeong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.472-477
    • /
    • 2023
  • In this paper, we proposes the use of Model Predictive Control (MPC) techniques to enable quadcopter drones to effectively follow paths and maintain flight safety even under dynamic external environments and disturbances. Through simulations conducted in MATLAB/Simulink, the performance of two controllers, PID and MPC, is compared in flight scenarios with disturbances. The proposed design method shows that the MPC controller, when compared to the PID controller, exhibits a difference in the Mean Squared Error between the intended flight path and the actual path of the quadcopter drone. This difference is 0.2 in performance under no disturbance, and it increases to 0.8 under disturbance, demonstrating the improved path following accuracy of the MPC controller.

Determination of Surge Tank Scale for Dam Safety Management (댐 안전관리를 위한 조압수조의 규모 결정)

  • Lee, Ho Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.2
    • /
    • pp.164-174
    • /
    • 2007
  • Phenomena of hydraulic transient such as water hammer should be analyzed to design the pipeline systems effectively in dam. Surge tanks generally are used to reduce change in pressure caused by hydraulic transient from load changes on the turbines. In this study, the appropriate scale of surge tank with chamber is investigated for dam safety management. The variation of water level in the surge tank are computed using governing equation. Using the Thoma-Jaeger's stability condition, static and dynamic stability are investigate for the cases of flood water level, normal high water level, rated water level and low water level. Finally appropriate diameters of shaft and chamber are determined in the surge tank with chamber.

Design of the Condenser and Automation of a Solar Powered Water Pump (태양열 물펌프의 운전 자동화 설계)

  • Kim Y. B.;Son J. G.;Lee S. K.;Kim S. T.;Lee Y. K.
    • Journal of Animal Environmental Science
    • /
    • v.10 no.3
    • /
    • pp.141-154
    • /
    • 2004
  • The solar powered water pump is very ideal equipment because solar power is more intensive when the water is more needed in summer and it is very helpful in the rural area, in which the electrical power is not available. The average so]ar radiation energy is 3.488 kWh/($m^2{\cdot}day$) in Korea. In this study, the automatic control logic and system of the water pump driven by the radiation energy were studied, designed, assembled, tested and analyzed for realizing the solar powered water pump. The experimental system was operated automatically and the cycle was continued. The average quantity of the water pumped per cycle was about 5,320 cc. The cycle time was about 4.9 minutes. The thermal efficiency of the system was about $0.030\%$. The pressure level of the n-pentane vapour in flash tank was 150$\%$450 hPa(gauge) which was set by the computer program for the control of the vapour supply. The pressure in the condenser and air tank during cycles was maintained as about 600 hPa and 1,200 hPa respectively. The water could be pumped by the amount of 128kg/($m^2{\cdot}day$) with the efficiency of $0.1\%$ and the pumping head of 10 m for the average solar energy in Korea.

  • PDF

The Usefulness of Pressure-regulated Volume Control(PRVC) Mode in Mechanically Ventilated Patients with Unstable Respiratory Mechanics (기계 호흡 중 불안정한 호흡역학을 보인 환자에서 압력조절용적조정양식(Pressure-regulated Volume Control Mode)의 효용)

  • Sohn, Jang-Won;Koh, Youn-Suck;Lim, Chae-Man;Shim, Tae-Sun;Lee, Jong-Deog;Lee, Sang-Do;Kim, Woo-Sung;Kim, Dong-Soon;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.6
    • /
    • pp.1318-1325
    • /
    • 1997
  • Background : Since the late 1960s, mechanical ventilation has been accomplished primarily using volume controlled ventilation(VCV). While VCV allows a set tidal volume to be guaranteed, VCV could bring about excessive airway pressures that may be lead to barotrauma in the patients with acute lung injury. With the increment of knowledge related to ventilator-induced lung injury, pressure controlled ventilation(PCV) has been frequently applied to these patients. But, PCV has a disadvantage of variable tidal volume delivery as pulmonary impedance changes. Since the concept of combining the positive attributes of VCV and PCV(dual control ventilation, DCV) was described firstly in 1992, a few DCV modes were introduced. Pressure-regulated volume control(PRVC) mode, a kind of DCV, is pressure-limited, time-cycled ventilation that uses tidal volume as a feedback control for continuously adjusting the pressure limit However, no clinical studies were published on the efficacy of PRVC until now. 'This investigation studied the efficacy of PRVC in the patients with unstable respiratory mechanics. Methods : The subjects were 8 mechanically ventilated patients(M : F=6 : 2, $56{\pm}26$ years) who showed unstable respiratory mechanics, which was defined by the coefficients of variation of peak inspiratory pressure for 15 minutes greater than 10% under VCV, or the coefficients of variation of tidal volume greater than 10% under PCV. The study was consisited of 3 modes application with VCV, PCV and PRVC for 15 minutes by random order. To obtain same tidal volume, inspiratory pressure setting was adjusted in PCV. Respiratory parameters were measured by pulmonary monitor(CP-100 pulmonary monitor, Bicore, Irvine, CA, USA). Results : 1) Mean tidal volumes($V_T$) in each mode were not different(VCV, $431{\pm}102ml$ ; PCV, $417{\pm}99ml$ ; PRVC, $414{\pm}97ml$) 2) The coefficient of variation(CV) of $V_T$ were $5.2{\pm}3.9%$ in VCV, $15.2{\pm}7.5%$ in PCV and $19.3{\pm}10.0%$ in PRVC. The CV of $V_T$ in PCV and PRVC were significantly greater than that in VCV(p<0.01). 3) Mean peak inspiratory pressure(PIP) in VCV($31.0{\pm}6.9cm$ $H_2O$) was higher than PIP in PCV($26.0{\pm}6.5cm$ $H_2O$) or PRVC($27.0{\pm}6.4cm$ $H_2O$)(p<0.05). 4) The CV of PIP were $13.9{\pm}3.7%$ in VCV, $4.9{\pm}2.6%$ in PVC and $12.2{\pm}7.0%$ in PRVC. The CV of PIP in VCV and PRVC were greater than that in PCV(p<0.01). Conclusions : Because of wide fluctuations of VT and PIP, PRVC mode did not seem to have advantages compared to VCV or PCV in the patients with unstable respiratory mechanics.

  • PDF

Stability Analysis for a Dyke Subjected to Tidal Fluctuations (조위변동(潮位變動)을 받는 호안제(護岸堤)의 사면안정해석(斜面安定解析))

  • Kim, Sang Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.3
    • /
    • pp.91-100
    • /
    • 1988
  • Assuming that tidal level is constantly changed with an amplitude of 10 meters and a cycle of 12 hours, the slope stability for a typical dyke is analysed. The variation of pore water pressure within the dyke during the tidal change is obtained using a computer program, FLUMP, which is incorporated with saturated-unsaturated and transient flow. The results show that the variation of free water surface and distribution of pore water pressure within the dyke during the tidal fluctuations can be clearly predicted with the computer program. When a tide is lowered to the minimum level, the predicted pressure head is higher than the level of the free water surface in some parts of the dyke; that is, excess pore water pressure is generated in a zone affected by the tidal change. Also an unsaturated zone which shows negative pore water pressure is temporally created when a tide is lowered. The shear strength of the zone can be predicted based on the proposal suggested by Fredlund et al. It is emphasized that the excess pore water pressure generated during tidal fluctuations and strength parameters for the unsaturated zone should be considered in analyzing the slope stability of dykes. When those are considered, the critical slip surface seems to be located below the free water surface obtained when a tide is at the lowest.

  • PDF

A Study on Water Level Control of PWR Steam Generator at Low Power Operation and Transient States (저출력 및 과도상태시 원전 증기발생기 수위제어에 관한 연구)

  • Na, Nan-Ju;Kwon, Kee-Choon;Bien, Zeungnam
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.18-35
    • /
    • 1993
  • The water level control system of the steam generator in a pressurized water reactor and its control problems are analysed. In this work the stable control strategy during the low power operation and transient states is studied. To solve the problem, a fuzzy logic control method is applied as a basic algorithm of the controller. The control algorithm is based on the operator's knowledges and the experiences of manual operation for water level control at the compact nuclear simulator set up in Korea Atomic Energy Research Institute. From a viewpoint of the system realization, the control variables and rules are established considering simpler tuning and the input-output relation. The control strategy includes the dynamic tuning method and employs a substitutional information using the bypass valve opening instead of incorrectly measured signal at the low flow rate as the fuzzy variable of the flow rate during the pressure control mode of the steam generator. It also involves the switching algorithm between the control valves to suppress the perturbation of water level. The simulation results show that both of the fine control action at the small level error and the quick response at the large level error can be obtained and that the performance of the controller is improved.

  • PDF

Analysis of Hydraulic effects on Piers and Transverse Overflow Type Structures in Urban Stream (도시하천의 교각 및 횡단 월류형 구조물에 의한 수리영향 분석)

  • Yoon, Sun-Kwon;Chun, Si-Young;Kim, Jong-Suk;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.2
    • /
    • pp.197-212
    • /
    • 2008
  • Recently, stream flow analysis has been accomplished by one or two dimensional equations and was applied by simple momentum equations and fixed energy conservations which contain many condition limits. In this study, FLOW-3D using CFD (Computational Fluid Dynamics) was applied to stream flow analysis which can solve three dimensional RANS (Reynolds Averaged Navier-Stokes Equation) control equation to find out physical behaviors and the effect of hydraulic structures. Numerical simulation accomplished those results was compared by using turbulence models such as ${\kappa}-{\varepsilon}$, RNG (Renormalized Group) ${\kappa}-{\varepsilon}$ and LES (Large Eddy Simulation). Numerical analysis results have been illustrated by the turbulence energy effects, velocity of flow, water level pressure and eddy flows around the piers and transverse overflow type structures. These results will be able to used by basis data that catch hold of effects on long-term bed elevation changes, sediment accumulations, scours and water aggravations by removal of obsolete transverse over flow type structures in urban stream.

Determinants of Foreign Investment in the Korean Bonds by Maturity and Market Impacts (외국인의 만기별 국내 채권투자 결정요인과 채권시장 영향)

  • Kim, Dong Soon;Park, Jong Youn
    • International Area Studies Review
    • /
    • v.15 no.1
    • /
    • pp.291-314
    • /
    • 2011
  • We examine the motives of foreigner's investments in the Korean bonds by maturity and try to prove that market impacts are different by their investment maturity. Foreign investors initially focused on short-term bonds, but have expanded to mid- to long-term bonds since 2010. The previous studies found that covered interest arbitrage was the main reason for foreign investment. However, there should be some other reasons as their investment in mid- to long-term bonds might have nothing to do with arbitrage. In the empirical analysis, we found that foreign investment in bonds with less than 2 year maturity is driven by arbitrage as previous studies. However, investment in bonds with 2-5 year maturity is sensitive to the FX volatility and the stock market performance compared with the U.S. and investment in bonds with more than 5 year maturity is driven by the CDS premium differential between Korea and PIIGS countries. The more foreigners have invested mid- to long-term bonds, the stronger downward pressure has been on the bond yields. In addition, foreign investors indirectly affected the spreads. Meanwhile, the government should prepare some policy measures since concerns over side effects such as the Korean won appreciation and an abrupt capital outflow are arising.

A Numerical Study on Pressure Fluctuation and Air Exchange Volume of Door Opening and Closing Speeds in Negative Pressure Isolation Room (음압격리병실에서의 병실 문의 개폐속도에 따른 실간 압력변동 및 공기교환량에 대한 해석적 연구)

  • Kim, Jun Young;Hong, Jin Kwan
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.24 no.1
    • /
    • pp.51-58
    • /
    • 2018
  • Purpose: In this study, through the comparison of the pressure fluctuation and air exchange volume in negative isolation room according to the type of the door and door opening/closing speeds, which is one of the main factors causing the cross contamination of the negative pressure isolation room, establishes standard operating procedures to prevent cross contamination in high risk infectious diseases and isolation room design. Methods: In this study, the air flow each of the room is analyzed using ANASYS CFX CODE for flow analysis. In addition, the grid configuration of the door is constructed by applying Immersed Solid Methods. Results: The pressure fluctuation due to the opening and closing of the hinged door was very large when the moment of the hinged door opened and closed. Especially, at the moment when the door is closed, a pressure reversal phenomenon occurs in which the pressure in the isolation room is larger than the pressure in the anteroom. On the other hand, the pressure fluctuation due to the opening and closing of the sliding door appeared only when the door was closed, but the pressure reversal phenomenon not occurred at the moment when the sliding door was closed, unlike the hinged door. As the opening and closing speed of the hinged door increases, the air exchange volume is increased. However, as the opening and closing speed of the sliding door is decreased, the air exchange volume is increased. Implications: According to the results of this study, it can be concluded that the pressure fluctuation due to the opening and closing of the hinged door is greater than the pressure fluctuation due to the opening and closing of the sliding door. In addition, it can be confirmed that the pressure reversal phenomenon, which may cause to reduce the containment effect in negative pressure isolation room, is caused by the closing of the hinged door. Therefore, it is recommended to install a sliding door to maintain a stable differential pressure in the negative isolation room. Also, as the opening and closing speed of the hinged door is slower and the opening and closing speed of the sliding door is faster, the possibility of cross contamination of the room can be reduced. It is therefore necessary to establish standard operating procedures for negative isolation room for door opening and closing speeds.

A Study on the Performance and Combustion Characteristics with CNG Substitution Rate in a Diesel Engine (CNG 혼소율 변화에 따른 디젤엔진의 성능 및 연소 특성에 관한 연구)

  • Jang, Hyeong-Jun;Lee, Sun-Youp;Kim, Chang-Gi;Cho, Jeong-Kwon;Lim, Jong-Han;Yoon, Jun-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.700-707
    • /
    • 2017
  • In the international natural gas market, natural gas has markedly low calories. The domestic calories standard of natural gas was changed and the performance and efficiency of many industrial machines using natural gas were affected because of low caloric natural gas. Therefore, in this study, a dual fuel engine fueled with natural gas and diesel was tested to examine the effects of the CNG substitution rate on the combustion characteristics, such as thermal efficiency, COVimep and heat release rate. The CNG substitution rate was defined as the ratio of CNG instead of diesel, which was calculated as the total energy. The conditions of the tested engine were fixed $1800rpm/500N{\cdot}m$. In addition, diesel fuel was injected at $16^{\circ}CA$ BTDC and the fuel pressure was fixed at 85 MPa; the lower heating value of CNG was $10,400kcal/Nm^3$. The results of the engine test showed that the amount of diesel fuel was changed according to the CNG substitution rate. Therefore, when the substitution rate was increased, the amount of diesel fuel was decreased, which affected the energy for ignition. In addition, the ignition delay duration was increased, which affected the thermal efficiency and torque. On the other hand, the COVimep was less than 5% and a stable combustion state of the engine was shown.