• Title/Summary/Keyword: 압력 변동

Search Result 430, Processing Time 0.027 seconds

Optimal Sensor Location in Water Distribution Network using XGBoost Model (XGBoost 기반 상수도관망 센서 위치 최적화)

  • Hyewoon Jang;Donghwi Jung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.217-217
    • /
    • 2023
  • 상수도관망은 사용자에게 고품질의 물을 안정적으로 공급하는 것을 목적으로 하며, 이를 평가하기 위한 지표 중 하나로 압력을 활용한다. 최근 스마트 센서의 설치가 확장됨에 따라 기계학습기법을 이용한 실시간 데이터 기반의 분석이 활발하다. 따라서 어디에서 데이터를 수집하느냐에 대한 센서 위치 결정이 중요하다. 본 연구는 eXtreme Gradient Boosting(XGBoost) 모델을 활용하여 대규모 상수도관망 내 센서 위치를 최적화하는 방법론을 제안한다. XGBoost 모델은 여러 의사결정 나무(decision tree)를 활용하는 앙상블(ensemble) 모델이며, 오차에 따른 가중치를 부여하여 성능을 향상시키는 부스팅(boosting) 방식을 이용한다. 이는 분산 및 병렬 처리가 가능해 메모리리소스를 최적으로 사용하고, 학습 속도가 빠르며 결측치에 대한 전처리 과정을 모델 내에 포함하고 있다는 장점이 있다. 모델 구현을 위한 독립 변수 결정을 위해 압력 데이터의 변동성 및 평균압력 값을 고려하여 상수도관망을 대표하는 중요 절점(critical node)를 선정한다. 중요 절점의 압력 값을 예측하는 XGBoost 모델을 구축하고 모델의 성능과 요인 중요도(feature importance) 값을 고려하여 센서의 최적 위치를 선정한다. 이러한 방법론을 기반으로 상수도관망의 특성에 따른 경향성을 파악하기 위해 다양한 형태(예를 들어, 망형, 가지형)와 구성 절점의 수를 변화시키며 결과를 분석한다. 본 연구에서 구축한 XGBoost 모델은 추가적인 전처리 과정을 최소화하며 대규모 관망에 간편하게 사용할 수 있어 추후 다양한 입출력 데이터의 조합을 통해 센서 위치 외에도 상수도관망에서의 성능 최적화에 활용할 수 있을 것으로 기대한다.

  • PDF

A Study on the Burst Pressure of Composite Motor Case due to the Change of Metal Boss PDR Design (금속 보스 압력분포비 설계 변경에 따른 복합재 연소관 파열압력에 관한 연구)

  • Kim, Namjo;Jeong, Seungmin;Yun, Kyeongsoo;Chung, Sangki;Hwang, Taekyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.4
    • /
    • pp.21-27
    • /
    • 2019
  • Composite motor cases fabricated by the filament winding method are structurally weak in the dome when they are required to withstand the internal pressure of the combustion gas. In this study, a finite element analysis is conducted to compare the burst pressure of a composite dome according to the variation of the pressure distribution ratio(PDR). The performance of the composite motor case was compared quantitatively by calculating the stress on the inner and outer dome surfaces and metal boss volume. As a result, the critical point of the failure mode was observed at a PDR between 2.5 and 3.0. A design at a PDR of 2.5­-3.5 can reduce the weight of metal boss without fluctuation in the burst pressure of the combustion motor case. Moreover as the design reference value changes according to the dome shape and opening size, further analysis and testing are necessary.

A Test on the Volatility Feedback Hypothesis in the Emerging Stock Market (신흥주식시장에서의 변동성반응가설 검정)

  • Kim, Byoung-Joon
    • The Korean Journal of Financial Management
    • /
    • v.26 no.4
    • /
    • pp.191-234
    • /
    • 2009
  • This study examined on the volatility feedback hypothesis through the use of threshold GARCH-in-Mean (GJR-GARCH-M) model developed by Glosten, Jaganathan, and Runkle (1993) in the stock markets of 14 emerging countries during the period of January, 1996 to May, 2009. On this study, I found successful evidences which can support the volatility feedback hypothesis through the following three estimation procedures. First, I found relatively strong positive relationship between the expected market risk premiums and their conditional standard deviations from the GARCH-M model in the basis of daily return on each representative stock market index, which is appropriate to investors' risk-averse preferences. Second, I can also identify the significant asymmetric time-varying volatility originated from the investors' differentiated reactions toward the unexpected market shocks by applying the GJR-GARCH-M model and further find the lasting positive risk aversion coefficient estimators. Third, I derived the negative signs of the regression coefficient of unpredicted volatility on the stock market return by re-applying the GJR-GARCH-M model after I controlled the positive effect of predicted volatility through including the conditional standard deviations from the previous GARCH-M model estimation as an independent explanatory variable in the re-applied new GJR-GARCH-M model. With these consecutive results, the volatility feedback effect was successfully tested to be effective also in the various emerging stock markets, although the leverage hypothesis turned out to be insufficient to be applied to another source of explaining the negative relationship between the unexpected volatility and the ex-post stock market return in the emerging countries in general.

  • PDF

Influence of the Silver Line Dance Applied to the elderly on the Balance during Walking (라인댄스 운동이 여성노인들의 보행 균형성 요인에 미치는 영향)

  • Choi, Youn-Sun
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.3
    • /
    • pp.109-118
    • /
    • 2013
  • The purpose of this study was to determine the effects of line dance programme on the balance ability during walking to reveal the exercise intervention for fall prevention. A 12-week line dance programme was applied to 18 elderly females who aged more than 65 years in the community. Balance ability during walking was evaluated by the range of center of pressure(cop), the velocity of cop, and free torque that calculated on the basis of ground reaction force data. The range and velocity of cop in the anterio-posterior were significantly reduced after performing(p<.01, p<.05, respectively), but change in those of cop in the medio-lateral and free torque were not found. It was demonstrates that 12-week line dance programme allows more effective in anterio-posterior stability of walking. It was suggested that the effect of fall prevention exercise should be studied more associate with fall frequency as future study.

Control of Supersonic Cavity Flow Oscillation Using Passive Means (피동제어법을 이용한 초음속 공동유동의 진동 제어)

  • Lee, Young-Ki;Deshpande, Srikanth;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.363-366
    • /
    • 2006
  • The effectiveness of two passive control techniques for alleviating the pressure oscillation generated in a supersonic cavity flow is investigated numerically. The passive devices suggested in the present research include a triangular bump and a sub-cavity installed near the upstream edge of a rectangular cavity. The supersonic cavity flow characteristics are examined by using the three-dimensional, unsteady Wavier-Stokes computation based on a finite volume scheme. Large eddy simulation (LES) is carried out to properly predict the turbulent features of cavity flow. The results show that the pressure oscillation near the downstream edge dominates overall time-dependent cavity pressure variations. Such an oscillation is attenuated more considerably using the sub-cavity compared with other methods, and a larger sub-cavity leads to better control performance.

  • PDF

Prediction of the Thermal Efficiency at Increased Pressure Ratio in an F-Class Gas Turbine with Operating Data (F급 가스터빈의 압력비 증가 시 운전데이터를 이용한 열효율 변동 예측)

  • Park, Joon-Chul;Heo, Ki-Moo;Yoon, Sung-Hoon;Moon, Yoon-Jae;Yoo, Ho-sun;Lee, Jae Heon
    • Plant Journal
    • /
    • v.10 no.3
    • /
    • pp.39-44
    • /
    • 2014
  • The gas turbine thermal efficiency has been predicted when the compressor pressure ratio increases from the previously set 13.5. Thermal efficiency has been predicted from 14.2 up to 18.2 at which the turbine work reaches its maximum value on the assumption that isentropic efficiency of the compressor and the turbine are constant using the operating data at the pressure ratio of 13.5. 35.11% of thermal efficiency has been acquired by the performance test when the pressure ratio increased to 16.2 since replacing the compressor low pressure stages. It's been approved that predicting thermal efficiency using the operating data at the pressure ratio of 13.5 is useful within 7.86% of tolerance as the figure measured by the performance test.

  • PDF

A Study on Flow Characteristics around Foot to Investigate Principle of Underwater Exercise for Rheumatoid Arthritis Patients (류마티스 관절염 환자의 수중운동 원리 규명을 위한 발 주위 유동 특성 연구)

  • Choi, Ji-Hyun;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.403-410
    • /
    • 2021
  • There are positive effects, such as pain reduction, when rheumatism patients exercise in water, but the cause of the pain reduction is unclear, and research on this is inadequate. This study examined the flow of the surface of the foot and the principles of pain relief. Unsteady simulations were conducted to analyze the flow, which was performed by repeatedly setting the movement of the foot raising and descending three times. Pressure fluctuations and frequencies were analyzed by designating pressure points at the painful location. The results showed that a positive and negative pressure of approximately ±500Pa was applied overall. A pressure of approximately ±2000Pa was applied when the direction of movement was changed. A frequency of approximately 35 to 80Hz was generated in the area where rheumatoid arthritis pain frequently occurs. The effects of reducing pain could be predicted when continuous pressure fluctuations and frequencies are applied repeatedly to the painful location, blood circulation promotion. The results could be used as basic data to understand the principles of aquatic exercise and support the development of underwater exercise programs and developing related medical equipment.

Large eddy simulation of a steady hydraulic jump at Fr = 7.3 (Fr = 7.3의 정상도수 큰와모의)

  • Paik, Joongcheol;Kim, Byungjoo
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.spc1
    • /
    • pp.1049-1058
    • /
    • 2023
  • The flow passing through river-crossing structures such as weirs and low-fall dams is dominated by rapidly varied flow including hydraulic jump. The intense unsteadiness of flow velocity and free surface profile affects the stability of such hydraulic structures. In particular, the steady hydraulic jump generated at high Froude number conditions includes remarkably air entrainment, making the flow characteristics more complicated. In this study, a large-eddy simulation was performed for turbulence effect and the hybrid VoF technique to simulate the steady hydraulic jump at the Froude number of 7.3 and the Reynolds number of 15,700. The results of the numerical simulation showed that the instantaneous maximum pressure and time-average pressure distribution calculated on the bottom surface downstream of the structure could be reasonably well reproduced being in good agreement with the experimental values. However, the instantaneous minimum pressure distribution in the direct downstream of the structure shows the opposite pattern to the target experimental measurement value. However, the numerical simulation performed in this study is considered to reasonably predict the minimum pressure distributions observed in various experiments conducted at similar conditions. The vertical distributions of flow velocity and air concentration computed in the center of the hydraulic jump were found to be in good agreement with the experimental results measured under similar conditions, showing self-similarity. These results show that the large eddy simulation and hybrid VoF techniques applied in this study can reproduce the hydraulic jump with strong air entrainment and the resulting intense free surface and pressure fluctuations at high Froude number conditions.

Determination of Optimal Pressure Monitoring Locations for Water Distribution Systems using Entropy Theory (엔트로피 이론을 이용한 상수관망의 최적 압력 계측 위치 결정)

  • Chung, Gun-Hui;Chang, Dong-Eil;Yoo, Do-Guen;Jun, Hwan-Don;Kim, Joong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.7
    • /
    • pp.537-546
    • /
    • 2009
  • Determination of optimal pressure monitoring location is essential to manage water distribution system efficiently and safely. In this study, entropy theory is applied to overcome defects of previous researches about determining the optimal sensor location. The previous studies required the calibration using historical data, therefore, it was difficult to apply the proposed method in the place where the enough data were not available. Also, most researches have focused on the locations to minimize cost and maximize accuracy of the model, which is not appropriate for the purpose of maintenance of the water distribution system. The proposed method in this study quantify the entropy which is defined as the amount of information calculated from the pressure change due to the variation of discharge. When abnormal condition is occurred in a node, the effect on the entire network is presented by the entropy, and the emitter is used to reproduce actual pressure change pattern in EPANET. The optimal location to install pressure sensors in water distribution system is the nodes having the maximum information from other nodes. The looped and branched networks are evaluated using the proposed model. As a result, entropy theory provides general guideline to select the locations to install pressure sensors and the results can be used to help decision makers.

Misfire Detection by Using the Crankshaft Speed Fluctuation(2) : Vehicle Test (크랭크축 각속도의 변동을 이용한 실화 판정(2) - 실차 실험)

  • 배상수;김세웅;임인건;김응서
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.5
    • /
    • pp.90-99
    • /
    • 1996
  • To keep up with the regulation of OBD II(on board diagnostics II), many detection methods for engine misfire have been developed. Among them, the method of using the crankshaft speed fluctuation is the most noticeable in the point of view of lower cost and easier installation than any others. On the basis of the results obtained from the previous engine-dynamometer test, the integrating torque index (ITI) has been introduced. In this research, the instrumental and the interfacing systems to engine control unit(ECU) are developed for the vehicle test. Therefore, the vehicle and chassis-dynamometer test can be carried out in addition to the rough road test. From this test, the previousproposed method proved that it can be applied to the real vehicle.

  • PDF