• Title/Summary/Keyword: 압력조절기

Search Result 167, Processing Time 0.032 seconds

Void Ratio Evaluation of Unsaturated Soils by Compressional and Shear Waves (압축파와 전단파를 이용한 불포화토의 간극비 산정)

  • Byun, Yong-Hoon;Cho, Se-Hyun;Yoon, Hyung-Koo;Choo, Yun-Wook;Kim, Dong-Su;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.12
    • /
    • pp.41-51
    • /
    • 2012
  • Soils are commonly unsaturated in the near surface. The stiffness of soils is affected by the amount of air and water. The objective of this study is to evaluate the porosity of the unsaturated soils by using the elastic waves including compressional and shear waves. The elastic waves are measured at different degrees of saturation by controlling the matric suction. Thus, the unsaturated soils are characterized at different levels of the matric suction. Shear and compressional waves are measured by using the bender elements and the piezo disk elements, respectively. Both transducers are installed on the walls of the rectangular cell. The unsaturated soils are prepared by using uniform size sands and silts. Test results show that both compressional and shear wave velocities change according to the matric suction. The elastic modulus, the shear modulus, and the Poisson's ratio are estimated based on the measured elastic wave velocities. In addition, the void ratio of the unsaturated soils estimated using elastic wave velocities matches well with the volume based void ratio. This study demonstrates that the elastic waves can be effectively used for the characterization of unsaturated soils.

Thermal Flow Characteristics of a Hybrid Plant Factory with Multi-layer Cultivation Shelves (다층 재배선반을 갖는 하이브리드 식물공장의 열유동 특성)

  • Yoon, Ji-Hwan;Ryu, Bong-Jo;Kim, Youngshik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7990-8000
    • /
    • 2015
  • Plant factories are plant cultivation systems which produce farm products uniformly under the controlled environmental condition regardless of seasons and places. Thermal flow in the plant factory is an important parameter in cultivating plants. In this research, we study thermal flow characteristics for a hybrid plant factory with multi-layer cultivation shelves using computer simulation techniques. In order to obtain numerical solutions for thermal flow characteristics, a finite volume method was applied. We consider a low-Reynolds-number ${\kappa}-{\epsilon}$ turbulence model, incompressible viscous flows, and pressure boundary conditions for numerical simulation. Commercial software Solid Works Flow Simulation is then used to investigate characteristics of thermal flows in the plant factory applying several different inflow air velocities and arrangements of cultivation shelves. From numerical analysis results, we found that temperatures in cultivation shelves were uniformly distributed for Case 3 when the inflow air velocity was 1.6 m/s by using a blower in the plant factory. However in Case 1 lower temperature distributions were observed in test beds, TB2 and TB3, which indicated that additional temperature control efforts would be required. Average shelf temperature increased by $3^{\circ}C$ using artificial light source (DYLED47) with 50% blue and 50% red LED ratios. Korea Academia-Industrial cooperation Society.

Development of VPPE-BE Testing System to Evaluate Modulus under Post-Compaction Variation in Matric Suction for Unsaturated Compacted Soils (다짐지반의 모관흡수력 변화에 따른 탄성계수 평가를 위한 VPPE-BE 시험 시스템 개발)

  • Lee, Sei-Hyun;Seo, Won-Seok;Choo, Yun-Wook;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.117-127
    • /
    • 2008
  • The volumetric pressure plate extractor (VPPE) was modified for the measurement of shear wave velocity ($V_s$) at various levels of matric suction as well as soil water characteristic curve (SWCC). A non-destructive technique with a pair of bender element (BE) was employed in order to measure the $V_s$ and the corresponding maximum shear modulus ($G_{max}$) of unsaturated soil specimens. Three types of soil were collected from different road construction sites in Korea. For all test soils, the variations in $G_{max}$ with the various levels of water content and matric suction were investigated using the developed apparatus. Compared with the preceding results from the suction-controlled torsional shear (TS) testing system and in-situ seismic tests, the feasibility fur evaluating modulus characteristics of unsaturated compacted soils with the developed VPPE-BE system was assessed. It was confirmed that the newly developed system would be potentially helpful in modeling seasonal variation of modulus.

Clinical Study of Children Using Home Mechanical Ventilation (가정용 인공 호흡기를 사용하는 소아의 임상적 고찰)

  • Ahn, Young Joon;Lee, Seung Hyeon;Kim, Hyo-Bin;Park, Seong Jong;Ko, Tae Sung;Hong, Soo Jong
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.4
    • /
    • pp.401-405
    • /
    • 2005
  • Purpose : The use of mechanically-assisted ventilators at home reduces morbidity and improves the quality of life in children with chronic respiratory failure. But in Korea there is no clinical data of children with home mechanical ventilation. We investigated ventilator types, duration, the causes of failure or death, and the cost needed for care. Methods : We retrospectively analyzed the medical records of 21 children who were admitted and who applied for home mechanical ventilation at the Pediatric Intensive Care Unit in Asan Medical Center. Phone interviews took place after discharge. and interviewed by phone after discharge. Results : The median age was 31 months; the median duration with ventilator was 25 months. Underlying diseases were 16 neuromuscular diseases, one metabolic disease and four chronic respiratory diseases. The types of ventilator were pressure and volume type(16 and five patients, respectively). The frequency of ventilation failure was once per 19 months. Weaning could be performed in three cases. Frequencies of admission after receiving ventilators were 1.7 times per year; the most common cause was pneumonia. Nine patients(43%) died; four of them died because of endotracheal tube obstruction. The costs for medical care were about 1,110,000 won per month. Conclusion : There is an increment in the numbers of individuals who need mechanical ventilation support. The most common cause of death was endotracheal tube obstruction. The most important problem for the patients was medical cost. There needs to be more interest in patients with ventilator and social welfare systems to support their families need to be prepared.

Evaluation of Parameters of Gas Exchange During Partial Liquid Ventilation in Normal Rabbit Lung (토끼의 정상 폐 모델에서 부분액체환기 시 가스교환에 영향을 주는 인자들에 대한 연구)

  • An, Chang-Hyeok;Koh, Young-Min;Park, Chong-Wung;Suh, Gee-Young;Koh, Won-Jung;Lim, Sung-Yong;Kim, Cheol-Hong;Ahn, Young-Mee;Chung, Man-Pyo;Kim, Ho-Joong;Kwon, O-Jung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.52 no.1
    • /
    • pp.14-23
    • /
    • 2002
  • Background: The opitmal ventilator setting during partial liquid ventilation(PLV) is controversial. This study investigated the effects of various gas exchange parameters during PLV in normal rabbit lungs in order to aid in the development of an optimal ventilator setting during PLV. Methods: Seven New-Zealand white rabbits were ventilated in pressure-controlled mode with the following settings; tidal volume($V_T$) 8 mL/kg, positive end-expiratory pressure(PEEP) 4 $cmH_2O$, inspiratory-to-expiratory ratio(I:E ratio) 1:2, fraction of inspired oxygen($F_TO_2$) 1.0. The respiration rate(RR) was adjusted to keep $PaCO_2$ between 35~45 mmHg. The ventilator settings were changed every 30 min in the following sequence : (1) Baseline, as the basal ventilator setting, (2) Inverse ratio, I:E ratio 2:1, (3) high PEEP, adjust PEEP to achieve the same mean inspiratory pressure (MIP) as in the inverse ratio, (4) High $V_T$, $V_T$ 15 mL/kg, (5) high RR, the same minute ventilation (MV) as in the High $V_T$. Subsequently, the same protocol was repeated after instilling 18 mL/kg of perfluorodecalin for PLV. The parameters of gas exchange, lung mechanics, and hemodynamics were examined. Results: (1) The gas ventilation(GV) group showed no significant changes in the $PaO_2$ at all phases. The $PaCO_2$ was lower and the pH was higher at the high $V_T$ and high RR phases(p<0.05). No significant changes in the lung mechanics and hemodynamics parameters were observed. (2) The baseline $PaO_2$ for the PLV was $312{\pm}$ mmHg. This was significantly lower when decreased compared to the baseline $PaO_2$ for GV which was $504{\pm}81$ mmHg(p=0.001). During PLV, the $PaO_2$, was significantly higher at the high PEEP($452{\pm}38$ mmHg) and high $V_T$ ($461{\pm}53$ mmHg) phases compared with the baseline phase. However, it did not change significantly during the inverse I:E ratio or the high RR phases. (3) The $PaCO_2$ was significantly lower at high $V_T$ and RR phases for both the GV and PLV. During the PLV, $PaCO_2$ were significantly higher compared to the GV (p<0.05). (4) There were no important or significant changes in of baseline and high RR phases lung mechanics and hemodynamics parameters during the PLV. Conclusion: During PLV in the normal lung, adequate $V_T$ and PEEP are important for optimal oxygenation.

Characteristics of Membrane Permeability on the Separation of Solid in a Liquid Livestock Manure (축분액비의 고액분리에 있어서 분리막의 투과특성)

  • 황명구;차기철;이명규
    • Journal of Animal Environmental Science
    • /
    • v.6 no.3
    • /
    • pp.175-184
    • /
    • 2000
  • A lab-scale MF membrane reactor was installed to investigate the membrane permeability, characteristics of membrane fouling at each conditions, and quality of permeate (liquid livestock manure) in the separation of solid-matters using membrane. Experiment was divided three filtration type such as follows; continuous filtration, gravity filtration, and intermittent filtration. As a result of experiment, flux 1 LMH was maintained for 7days, and trans-membrane pressure(TMP) was increased gradually under 10cmHg, but it was increased immediately after 10cmHg, respectively. However, the flux was increased, the Tmax was decreased exponential more and more. During the pure-flux test, most of the fouling of membrane was reversible. At the gravity filtration, permeate could be obtained as 1.75 LMH for 3.5days without any other electronic pressure. As an investigation of membrane surface, this study could be decided that the reason of fouling at the lower flux (Run 1 and 2) was attached matters in membrane surface, but at the higher flux (Run 4-6) was concentration polarization.

  • PDF

Synthesis of ceramic particles by hydrothermal method (수열법에 의한 세라믹분말 합성)

  • 김판채;최종건
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06b
    • /
    • pp.219-222
    • /
    • 1996
  • 수열법은 밀폐용기중에서 10$0^{\circ}C$이상의 가열, 가압된 수용액이 반응에 관여하는 것으로써, 수정, CaCO3, AlPO4, GaPO4 등과 같은 단결정의 육성 뿐만 아니라 균일분산계로부터 균일한 결정성의 미립자 합성에도 폭넓게 이용되고 있다. 세라믹분말의 합성에 있어서, 이 방법은 특히 형상, 입자크기의 제어가 용이할 뿐만 아니라 고상법, 졸-겔법, 공침법에서와 같은 열처리, 분쇄과정이 필요없기 때문에 고순도의 초미립자를 얻을 수 있는 장점이 있다. 근년 미국, 일본에서는 수열법을 이용한 유전, 압전체 등 세라믹분말의 일부가 공업적인 규모로 대량 생산되고 있다. 그러나 이에 대한 국내 기술은 아직 초기단계에 이르고 있는 실정이다. 따라서 본 연구실에서는 수열법에 의한 단결정 육성 (예; 자수정, CaCO3, AlPO4, GaPO4, KTP, Emerald 등), 박막제조 (예; GaP, PbTiO3, BaTiO3 등), 정제 (고령토, 장석, 도석 등), 원석처리 (진주, 인공 emerald, 비취 등) 그리고 각종 세라믹분말의 합성 등과 같은 다양한 기반기술의 축적과 동시에 공업화에 대응한 수열장치를 위하여 반응용기의 대형화, 엄밀한 밀폐방식, 실용적인 수열조건 등을 개발해 오고 있다. 본 발표에서는 현재까지의 연구개발 내용 중에서 결정성 미립자에 관련한 세라믹분말의 합성에 대한 일부의 결과들을 보고한다. 일반적으로 수열장치는 전기로, 반응용기, 온도 및 압력제어계 등을 기본으로 하고 있으며 시판용의 대부분이 교반기가 부착된 수직형 (vertical type)이다. 이와 같은 방식에 있어서는 엄밀한 밀폐가 곤란, 반응온도의 한계성 (25$0^{\circ}C$ 이하), 증진율의 한계성 (소량생산) 등과 같은 점이 있기 때문에 본 연구실에서는 개폐식 전기로내에 엄밀한 밀폐가 가능한 수평식(horizontal type)의 반응용기를 채택한 뒤 이를 회전 또는 시이소(seesaw)식으로 움직일 수 있도록 하여 연속공정화, 온도구배의 자율조절 그리고 보다 저온에서도 인위적인 이온의 확산을 효율적으로 유도할 수 있도록 하였다. 이와 같은 방식은 기존의 방식과 비교하여 반응용기 내에 응집현상과 미반응물이 존재하지 않으며 또한 단분산으로 결정성 미립자를 대량적으로 얻을 수 있는 장점이 있었다. 다음은 이상과 같이 본 연구실에서 자체 개발한 수열장치를 이용하여 PbTiO3, (Pb,La)TiO3Mn, BaTiO3, ZnSiO4:Mn, CaWO4 등과 같은 세라믹분말에 대한 합성 실험의 결과이다. 압전성, 초전성이 우수한 PbTiO3 및 (Pb,La)TiO3:Mn 분말의 수열합성은 PbO, TiO2, La2O3 등의 분말을 출발원료로 하여 합성도도 25$0^{\circ}C$부근의 알카리성 용액중에서 결정성 PbTiO3 및 (Pb,La)TiO3:Mn 미립자를 단상으로 얻었으며 입자의 형상 및 크기는 합성온도와 수열용매의 종류에 의존하였다. 유전체로서 폭넓게 응용되고 있는 BaTiO3 분말은 Ba(OH)2.8H2O, TiO2와 같은 최적의 출발원료를 선택함으로써 15$0^{\circ}C$ 부근의 저온영역에서도 용이하게 합성할 수 있었다. 특히 본 연구에서는 수용성인 Ba(OH)2.8H2O를 사용함으로써 host-guest적인 반응을 유도시키는데 있어 물의 가장 실용적이고 효과적인 수열용매임도 알았다. ZnSiO4:Mn, CaWO4, MgWO4와 같은 형광체 분말은 공업적으로 고상반응 또는 습식법에 의해 얻어지고 있으나 이들 방법에 있어서는 분쇄공정으로 인한 형광특성의 저하와 같은 문제점이 있다. 따라서 본 연구에서는 수열법을 이용하여 이들 화합물의 합성을 시도하였으며 그 결과 합성온도 30$0^{\circ}C$ 부근의 알칼리성 용액중에서 수열적으로 얻어짐을 알았다. 여기서의 합성분말을 이용하여 실제 조명램프로 제조한 결과 녹색, 청색 발광용 형광체로서 우수한 형광특성을 나타내었다. 천연에서 소량 산출되고 있는 고가의 (Li,Al)MnO2(OH)2:Co 분말은 도자기의 전사지용 청색안료로써 이용되고 있다. 본 연구실에서는 LiOH.H2O, Al(OH)3, MnO2 등의 분말을 출발원료로 하고 24$0^{\circ}C$ 온도 부근 그리고 물을 수열용매로 하여 천연산에 필적하는 (Li,Al)MnO2(OH)2:Co 분말을 인공적으로 합성하였다.

  • PDF