• Title/Summary/Keyword: 압력제어밸브

Search Result 262, Processing Time 0.024 seconds

An Analysis of the Dynamic Characteristics of a Spool Type Pressure Control Valve (스풀형 압력제어밸브의 동특성 해석)

  • Moon, Kang Hyun;Huh, Jun Young
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.61-66
    • /
    • 2018
  • Almost every hydraulic system is equipped with a pressure relief valve, to maintain working pressure of the system at a pre-determined level. Thus, dynamic characteristics of such a relief valve, in conjunction with other hydraulic components, are important in designing the hydraulic control system. The single stage pressure relief valve is dynamically undesirable, due to relatively low viscous damping, that causes high frequency oscillations. This problem is overcome by introducing orifices in the inner pilot line, and drain line. In this study, for the single stage spool type pressure relief valve, the system equations were derived through an adequate linearisation and several simplifications were made, to use the transfer function formulation technique. All coefficients were evaluated and used, to make some results by using Matlab software. Results of analysis are compared with experimental results. In this study, parameters affecting stability of valve design are determined and suggested relative to the design.

Pressure Control Characteristics of Proportional Pressure Reducing Valve (비례감압밸브의 압력제어특성)

  • Yun, S.N.;Ham, Y.B.;Jo, J.D.
    • Journal of Power System Engineering
    • /
    • v.7 no.1
    • /
    • pp.68-73
    • /
    • 2003
  • The purpose of this study is to develop a new proportional pressure reducing valve and to verify the validity of a new mechanism with pressure control pin. The dynamic characteristics of the object pressure reducing valve was studied by numerical analysis of the mathematical model. Also, static and dynamic characteristics of the new pressure control valve were tested with a testing system based on the test standard.

  • PDF

Pressure Control of Electro-Hydraulic Servo System by Two-Degree of Freedom Control Scheme (2자유도 제어기법에 의한 전자 유압 서보계의 압력제어)

  • 양경욱;오인호;이일영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.110-120
    • /
    • 1996
  • The purpose of this study is to build up the control scheme that promptly controls the pressure in a hydraulic cylinder having small control volume, using a PCV(proportional control valve) and a digital computer. Object pressure control system has the character to be unstable easily, because the displacement-flow gain of the PCV is so large considering comparatively small volume of the hydraulic cylinder and the time delay of response of PCV is long. Considering the above-mentioned characteristics of the object pressure control system, in this study, a control system is designed with two degree of freedom scheme that is composed by adding a feed-forward control path to I-PD control system, and the reference model is used to decide control parameters. And through some experiments on FF-I-PD, the validity of this control method is confirmed.

  • PDF

Development of the Design Technology for the Pressurization Equipments of High Speed Train (고속전철용 압력완화장치 설계기술 개발)

  • Yeom, Han-Gil;Park, Seong-Je;Go, Deuk-Yong
    • 연구논문집
    • /
    • s.28
    • /
    • pp.21-37
    • /
    • 1998
  • Atmospheric pressure in a tunnel rises in proportion to the square of train’s speed as it enters a tunnel. This pressure difference propagates into the train and cause aural discomfort to the passengers. In order to alleviate the aural discomfort of them. a new ventilation system has been designed and tested. This system controls the charged and discharged by flow rate by detecting the air pressure generated outside and inside of the train. Test to confirm the fundamental performance of the system was carried out. Consequently, this system was found to be able to alleviate the aural discomfort effectively. Application of the system to TGV-K running in the speed range of 350km/h is considered to have good propospect.

  • PDF

울진 3,4호기의 가압기고압력 원자로정지여유도 민감도 분석

  • 손석훈;서호택;정원상;서종태;이상근
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.594-601
    • /
    • 1996
  • 가압기고압력 원자로정지여유도(high pressurizer pressure trip margin)에 영향을 주는 요인들에 대한 민감도 분석을 울진 3,4호기 성능해석코드인 LTCUCN computer code틀 이용하여 수행하였다. 그 결과, 초기 가압기압력, 증기우회제어계통의 quick open지연시간, 터빈우회밸브의 quick opening시간, 원자로출력 감발계통의 용량, 원자로출력감발 제어붕 낙하시간, 가압기 살수작동 설정치 둥이 완전부하상실시 가압기압력을 상승시키는 주요인자임을 알 수 있었으며, 증기우회제어계통 및 가압기살수계통의 용량은 최대 가압기 압력에 미치는 영향이 미미한 것으로 판명되었다. 울진 3,4호기의 참조발전소인 영광 3,4호기의 as-built 자료를 토대로 울진 3,4호기의 원자로정지여유도를 계산한 결과 울진 3,4호기는 완전부하상실사건시 37 psi의 정지여유도를 가질 수 있는 것으로 판단된다. 그러나, 원자로출력감발계통이 있는 ABB-CE type의 울진 3,4호기에서는 완전부하상실사건보다 원자로출력감발계통이 동작하지 않는 부하감발사건이 최대 가압기 압력치를 유발하는 사건이고, 다양한 부하상실사건중에도 운전여유도는 확보하고 있음을 알 수 있었다.

  • PDF

Control of pressure and thrust for a variable thrust solid propulsion system using linearization (선형화 기법을 이용한 가변추력 고체추진 기관의 압력 및 추력 제어)

  • Kim, Young-Seok;Cha, Ji-Hyeong;Ko, Sang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.167-174
    • /
    • 2011
  • Solid propulsion systems have simple structures compared to other propulsion systems and are suitable to long-term storage. However the systems generally have limits on control of thrust levels. In this paper we suggest control algorithms for combustion chamber pressure of variable thrust solid propulsion systems using special nozzles such as pintle valve. For this we use a simple pressure change model by considering only mass conservation within the combustion chamber, design a classical algorithm and also a nonlinear controller using feedback linearization technique. Derived thrust equation and designe a thrust control model. We design the proportion-integral controller for linearizing about operating point. We also demonstrate the performance of controller model through numerical simulations.

  • PDF

A Study on the Heat Flow Change of Vacuum Jacket Valve According to Pressure Change and Jacket Thickness (자켓의 압력 및 두께 변화에 의한 진공 자켓 밸브의 유입 열량 변화에 관한 연구)

  • Kim, Si-Pom;Lee, Kwon-Hee;Jeon, Rock-Won;Do, Tae-Wan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.232-237
    • /
    • 2011
  • Recently, continuous research on cryogenic valves is being carried out with the rapid development of the cryogenic valve-related industry, and especially, high performance of cryogenic valves is being promoted due to the breakthrough development and demand of users, etc., of the mechanical, shipbuilding, semiconductor and display industry and the aerospace industry field, but it is the reality that technical development and research on cryogenic application equipment on vacuum insulation are insufficient. The present research focused on interception of heat exchange with the outside by keeping low pressure after installing a jacket pipe outside a stem and also considered heat transfer properties on changes in pressure of a vacuum part and radius of a jacket which can reduce heat exchange for effective heat transmission control by studying it in a three-dimensional numerical analysis method.