• Title/Summary/Keyword: 압력제어밸브

Search Result 263, Processing Time 0.033 seconds

Thermodynamic Analysis on Hybrid Molten Carbonate Fuel Cell - Turbo Expander System for Natural Gas Pressure Regulation (용융탄산염연료전지와 터보팽창기를 이용한 천연가스 정압기지의 열역학적 분석)

  • Sung, Taehong;Kim, Kyung Chun
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.28-34
    • /
    • 2014
  • In the natural gas pressure regulation station, high pressure natural gas is decompressing using pressure regulation valves. Waste pressure occurred in the pressure regulation process can be recovered through adopting turbo expanders. However, in the waste pressure recovery process, Joule Thompson effect causes below $0^{\circ}C$ and this low temperature freezes outside land of pipeline or generates methane hydrate in the pipeline which can block the pipeline. Therefore, turbo expander systems are accompanying with a boiler for preheating natural gas. Molten carbonate fuel cell (MCFC), one of the high temperature fuel cell, can use natural gas as a direct fuel and is also exhausting low emission gas and generating electricity. In this paper, a thermodynamic analysis on the hybrid MCFC-turbo expander system is conducted. The fuel cell system is analyzed for the base load of the hybrid system.

Mechanism Diagnosis and Avoidance Design on Transient Acoustic Vibration of Reheater Water Supply Piping in Supercritical Boiler (초임계 보일러 재열기 급수 공급배관의 과도 음향진동 진단 및 회피설계)

  • Kim, Yeon-Whan;Bae, Yong-Chae;Kim, Jae-Won;Lee, Doo-Young;Heo, Hae-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.385-393
    • /
    • 2013
  • In this paper, the mechanism identification and the avoidance measures on the phenomena of transient acoustic vibration amplified at the water-supply piping system to regulate the steam temperature of the boiler reheater in 500MW class supercritical power plant are presented. The pressure pulsation waves induced by the impeller passing of two feed-water pumps with five blades are coincident with the local acoustic modes of boiler reheater water-supply piping system. There are the phenomena amplified at the peaks of 5X, 10X, 15X and 20X in spectrums of piping vibration, sound pressure, and the feed-water's pressure pulsation waves. The shut-off device is installed in the piping system for the interception of pressure pulsation waves transmitted from two feed-water pumps and the modified design change of the piping layout is applied for the acoustic resonance avoidance. The acoustic natural frequencies are separated from the harmonics of pressure pulsation waves induced by the pump impellers passing through the design change of the span length. The acoustic vibration is gone by resonance avoidance measures. As a result, more than 20 dBA reduction is achieved from 100 dBA to 80 dBA.

Evaluation of Total Loss of Feedwater Accident/Recovery Phase and Investigation of the Associated EOP (완전급수상실사고/복구과정의 평가와 관련비상운전절차의 검토)

  • Bang, Young-Seok;Seul, Kwang-Won;Kim, Hho-Jung
    • Nuclear Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.37-50
    • /
    • 1993
  • To evaluate the sequence of event and the Thermohydraulic behavior during total loss of feedwater accident and recovery procedure, a RELAP5/MOD3 calculation is performed and compared with the LOFT L9-l/L3-3 experiment. Also, the predictability of the code for the major Thermohydraulic phenomena following the accident is assessed. As a result, it is found that a pressure control using the spray until the time the water level reaches the top of the pressurizer, an overpressure protection by pressurizer PORV, a recovery of the secondary heat removal capability by refilling steam generator, and an effective cooldown by the continued natural circulation can be performed without core uncovery. It is also found that the plant-specific evaluation is necessary to confirm the effectiveness of the current symptom-oriented emergency operating procedure, especially in an overpressure protection performance and steam generator recovery performance.

  • PDF

Thermodynamic Analysis on Hybrid Turbo Expander - Heat Pump System for Natural Gas Pressure Regulation (히트펌프를 적용한 터보팽창기 천연가스 정압기지의 열역학적 분석)

  • Sung, Taehong;Kim, Kyoung Hoon;Han, Sangjo;Kim, Kyung Chun
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.4
    • /
    • pp.13-20
    • /
    • 2014
  • In natural gas distribution system, gas pressure is regulated correspond to requirement using throttle valve which is releasing huge pressure energy as useless form. The waste pressure can be recovered by using turbo machinery devices such as a turbo expander. In this process, excessive temperature drop occurs due to Joule-Thompson effect during the expansion process. Installing natural gas boiler before or after the turbo expander prevents temperature drop. Fuel cell or gas engine hybrid system further improve the efficiency, but 1~2% of total transporting natural gas is used for operating the hybrid system. In this study, a heat pump system is proposed as a preheating device which can be operated without using transporting natural gas. Thermodynamic analysis on evaporating and condensing temperatures and refrigerants is conducted. Results show that R717 is proper refrigerant for the hybrid system with high COP and low turbine work within the defined operating conditions. In domestic usage in Korea, the heat pump system has more economic feasibility owing to natural gas being imported with a high price of LNG form.

Design and Manufacture of the air mixing system for supersonic ground test facility (초음속 지상추진시험설비의 공기 혼합시스템 설계 및 제작)

  • Lee, Yagn-Ji;Kang, Sang-Hun;Yang, Soo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.40-48
    • /
    • 2008
  • Air mixing system which is composed of air pressure control system, hot pipe system and air mixer, is the facility for mixing hot air($1000^{\circ}C$, 10kg/s) from storage air heater (SAH) and decompressed air($20^{\circ}C$, 15kg/s) from high pressure air supply system. Air pressure control system reduce the pressure of the air, from 32MPa to 3.5 MPa and supply the decompressed air to air mixer. The hot pipe system supply hot air from SAH to air mixer which mix hot with the decompressed air from air pressure control system. Fully mixed air flow rate is 25kg/s and mixed temperature is up to $400^{\circ}C$. So, we can expand the operating envelop of the supersonic ground test facility to low Mach number and low altitude region.

  • PDF

터보펌프 공급식 액체 로켓엔진의 시동 과도 해석

  • Park, Soon-Young;Nam, Chang-Ho;Moon, In-Sang;Seol, Woo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.142-152
    • /
    • 2005
  • There are two definite objects for developing the startup transient of liquid rocket engine. One is to achieve the repeatability of startup to ensure higher reliability, and the other is to reduce the time of the startup transient. Typically in the initial phase of engine development as we are currently opposing, it is hard to estimate engine startup time due to the lack of experiences. In this work, a startup transient analysis tool was developed with the introduction of the mathematical model for each component of pump-fed liquid rocket engine system. Startup transient was investigated for a 25 ton class gas generator cycle engine to find necessary time for reaching steady state from startup and this enabled to reveal dynamic characteristics of the engine.

  • PDF

Management of Test Facility for Tests of Liquid Rocket Engine on Off-Design Condition (액체로켓엔진 탈설계 조건 시험을 위한 시험설비 운용)

  • Yu, Byungil;Kim, Hongjip;Han, Yeongmin
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.5
    • /
    • pp.91-99
    • /
    • 2020
  • A liquid rocket engine goes through many tests to prove its performance before liftoff. It means the tests for setting ignition and start-up conditions or a test on design condition, which verifies the design performance. However, the development process requires verification of performance under off-design conditions through tests involving different operating conditions, which affects the duration of engine development. The off-design performance test is performed by altering the conditions of the propellant supplied to the engine in conjunction with the engine performance test that varies the opening of the control valves in the engine. This paper is based on the results of the engine tests performed at the KSLV-II engine test facilities in the Naro Space Center and describes the operations of the test facility for off-design condition test that changes the inlet conditions of the turbo-pump due to changes in the pressure and temperature of the propellant supplied to the test engines.

Effect of Control Valve Flow Rates Characteristics on the Performance of an Air Spring (제어밸브의 유량특성에 따른 에어스프링의 성능 변화)

  • Han, Seung Hun;Jang, Ji Seong;Ji, Sang Won
    • Journal of Drive and Control
    • /
    • v.13 no.3
    • /
    • pp.8-14
    • /
    • 2016
  • This study describes the effect of the critical pressure ratio of a control valve on the performance of an air spring system composed of an air spring, auxiliary chamber, control valve and mass in order to suggest a more efficient design for an air spring system. The critical pressure ratio of the control valve is assumed to have a fixed value, but the critical pressure ratio of the control valve is known to have various values between 0.05 and 0.6, and the effect of the variation of the critical pressure ratio on the performance of the air spring system has not yet been reported. The analysis derives nonlinear and linear governing equations of the air spring system, including the critical pressure ratio of the control valve. This simulation study is presented to show that the impedance and transmissibility characteristics of the air spring system change due to variations in the critical pressure ratio of the control valve as well as its sonic conductance. As a result, the critical pressure ratio of the control valve should be maintained as large as possible to improve the vibration isolation characteristics of the air spring system.

Design and Analysis of Cell Controller Operation for Heat Process (열공정에 대한 셀 콘트롤러 운영의 설계와 해석)

  • So, Ye In;Jeon, Sang June;Kim, Jeong Ho
    • Journal of Platform Technology
    • /
    • v.8 no.2
    • /
    • pp.22-31
    • /
    • 2020
  • The construction and operation of industrial automation has been actively taking place from manufacturing plan to production for improving operational efficiency of production line and flexibility of equipment. ISO/TC184 is standardizing on operating methods that can share information of programmable device controllers such as PLC and IoT that are geographically distributed in the production line. In this study, the design of the cell controller consists of PLC group and IoT group that perform signals such as temperature sensors, gas sensors, and pressure sensors for thermal processes and corresponding motors or valves. The operation and analysis of the cell controller were performed using SDN(Software Defined Network) and the three types of process services performed in thermal processes are real-time transmission service, loss-sensitive large-capacity transmission service, and normal transmission service. The simulation result showed that the average loss rate improved by about 17% when the traffic increased before and after the application of the SDN route technique, and the delay in the real-time service was as low as 1 ms.

  • PDF

Hydrogen Compressor Cycle Analysis for the Operating Pressure of 50 MPa and High Charging Capacity (50 MPa급 대용량 수소압축기 사이클 해석)

  • Song, Byung-Hee;Myoung, No-Seuk;Jang, Seon-Jun;Kwon, Jeong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.66-73
    • /
    • 2020
  • In the hydrogen compression cycle, which is currently being developed, hydrogen is compressed to a very high pressure using a compressor, and then stored and used in a high-pressure vessel. This shows that an increase in the temperature of hydrogen in the vessel due to a pressure rise during the filling process and the pressure fatigue due to the repeated cycle may cause problems in the reliability of the vessel. In this paper, for the entire processes in a 50 MPa hydrogen compression system, theoretical and numerical methods were conducted to analyze the following: the temperature increase of hydrogen in the vessel and the time required to reach thermal equilibrium with the surroundings, the change in temperature of hydrogen passing through the pressure reducing valve, and the required capacity of the heat exchanger for cooling the vessel. The results will be useful for the design and construction of hydrogen compression systems, such as hydrogen charging stations.