• 제목/요약/키워드: 압궤모드

검색결과 9건 처리시간 0.024초

축 하중을 받는 Al/CFRP 혼성튜브의 압궤모드와 에너지흡수 특성에 관한 연구 (A Study on the Collapse Modes and Energy Absorption Characteristics of AI/CFRP Compound Tubes Under Axial Compression)

  • 차천석;이길성;정진오;양인영
    • 대한기계학회논문집A
    • /
    • 제28권11호
    • /
    • pp.1768-1775
    • /
    • 2004
  • The compressive axial collapse tests were performed to investigate collapse modes and energy absorption characteristics of Al/CFRP compound tubes which are aluminum tubes wrapped with CFRP(Carbon Fiber Reinforced Plastics) outside the aluminum circular and square tubes. Based on collapse characteristics of aluminum tubes and CFRP tubes respectively, the axial collapse tests were performed for Al/CFRP compound tubes which have different CFRP orientation angles. Test results showed that Al/CFRP compound tubes supplemented the unstable brittle failure of CFRP tubes due to ductile nature of inner aluminum tubes. In the light-weight aspect, specific energy absorption were the highest for Al/CFRP, CFRP in the middle, and aluminum the lowest. Also, specific energy absorption of circular tubes was higher than square tubes'. It turned out that CFRP orientation angle of Al/CFRP compound tubes influence specific energy absorption together with the collapse modes of the tubes.

차체구조용 CFRP 사이드부재의 정적 압궤특성에 관한 연구 (A Study on the Static Collapse Characteristics of CFRP Side Member for Vehicle)

  • 이길성;양인영
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.83-86
    • /
    • 2005
  • The front-end side members of automobiles, such as the hat-shaped section member, absorb most of the energy during the front-end collision. The side members absorb more energy in collision if they have higher strength and stiffness, and stable folding capacity (local buckling). Using the above characteristics on energy absorption, vehicle should be designed light-weight to improve fuel combustion ratio and reduce exhaust gas. Because of their specific strength and stiffness, CFRP are currently being considered for many structural (aerospace vehicle, automobiles, trains and ships) applications due to their potential for reducing structural weight. Although CFRP members exhibit collapse modes that are significantly different from the collapse modes of metallic materials, numerous studies have shown that CFRP members can be efficient energy absorbing materials. In this study, the CFRP side members were manufactured using a uni-directional prepreg sheet of carbon/Epoxy and axial static collapse tests were performed for the members. The collapse mode and the energy absorption capability of the members were analyzed under the static load.

  • PDF

경량화용 Al/CFRP 사각 구조부재의 압궤 특성에 관한 연구 (A Study on the Collapse Characteristics of Al/CFRP Square Structural Member for Light Weight)

  • 황우채;심재기;양인영
    • 한국생산제조학회지
    • /
    • 제20권3호
    • /
    • pp.219-224
    • /
    • 2011
  • Aluminum or CFRP is representative one of the lightweight materials. Collapse behavior of Al/CFRP square structural member was evaluated in this study based on the respective collapse behavior of aluminum and CFRP member. Al/CFRP square structural members were manufactured by wrapping CFRP prepreg sheets outside the aluminum hollow members in the autoclave. Because the CFRP is an anisotropic material with mechanical properties, The Al/CFRP square structural members stacked at different angles(${\pm}15^{\circ}$, ${\pm}45^{\circ}$, ${\pm}90^{\circ}$, $90^{\circ}/0^{\circ}$ and $0^{\circ}/90^{\circ}$ where the direction on $0^{\circ}$ coincides with the axis of the member) and interface numbers(2, 3, 4, 6 and 7). The axial impact collapse tests were carried out for each section members. Collapse mode and energy absorption characteristics of the each member were analyzed.

적층조건에 따른 혼성 원형 박육부재의 충격압궤거동 (Impact Collapse Behavior of Hybrid Circular Thin-walled Member by Stacking Condition)

  • 이길성;박으뜸;양인영
    • 한국생산제조학회지
    • /
    • 제19권2호
    • /
    • pp.235-240
    • /
    • 2010
  • The recent trend of vehicle design aims at crash safety and environmentally-friendly aspect. For the crash safety aspect, energy absorbing members should be absorbed with collision energy sufficiently. But vehicle structure must be light weight for the environmentally-friendly aspect, in order to improve fuel efficiency and to reduce tail gas emission. Therefore, the light weight of vehicle must be achieved in a status of securing safety of crash. An aluminum or CFRP (Carbon Fiber Reinforced Plastics) is representative one among the light-weight materials. In this study, impact collapse behavior of circular hybrid thin-walled member is evaluated. The hybrid members are manufactured by wrapping CFRP prepreg sheets outside the aluminum circular members in the autoclave. Because the CFRP is an anisotropic material whose mechanical properties change with its stacking condition, special attention is given to the effects of the stacking condition on the collapse behavior evaluation of the hybrid thin-walled member. Collapse mode and energy absorption capability of the hybrid thin-walled member are analyzed with change of the fiber orientation angle and interface number.

경량화용 CFRP 모자형 구조부재의 적층각도 변화에 따른 압궤특성 (Collapse Characteristics of CFRP hat Shaped Structural Member with Various Orientation Angle for a Use of Lightweight)

  • 황우채;양용준;양인영
    • 한국생산제조학회지
    • /
    • 제21권6호
    • /
    • pp.865-870
    • /
    • 2012
  • CFRP of the advanced composite materials as structure materials for vehicles has a widely application in lightweight structural materials of air planes, ships and automobiles because of high strength and stiffness compared with conventional materials. This study is to investigate the energy absorption characteristics and collapse mode of CFRP single and double hat shaped structural member under the axial static collapse test. The CFRP single and double hat shaped structural members stacked at different angles (${\pm}15^{\circ}$, ${\pm}45^{\circ}$, ${\pm}90^{\circ}$, $90^{\circ}/0^{\circ}$ and $0^{\circ}/90^{\circ}$ where the direction on $0^{\circ}$ coincides with the axis of the member). The axial static collapse tests were carried out for each member. Collapse mode and energy absorption characteristics of the each member were analyzed.

축 하중을 받는 AI/CFRP 혼성튜브의 에너지흡수 특성 (Energy Absorption Characteristics of Al/CFRP Compound Tubes Under Axial Compression)

  • 이길성;차천석;문지현;양인영
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.108-113
    • /
    • 2004
  • The compressive axial collapse tests were performed to investigate energy absorption characteristics of Al/CFRP compound tubes which are aluminum tubes wrapped with CFRP (Carbon Fiber Reinforced Plastics) outside the aluminum circular and square tubes. Based on collapse characteristics of aluminum tubes and CFRP tubes respectively, the axial collapse tests were performed for Al/CFRP compound tubes which have different fiber orientation angles. Test results showed that Al/CFRP compound tubes supplemented the unstable brittle failure of CFRP tubes due to ductile nature of inner aluminum tubes. In the light-weight aspect, specific energy absorption were the highest for Al/CFRP, CFRP in the middle, and aluminum the lowest. Also, specific energy absorption of circular tubes was higher than square tubes'. It turned out that fiber orientation angle of Al/CFRP compound tubes influence specific energy absorption together with the collapse modes of the tubes.

  • PDF

준정적 축 압축하중을 받는 Al/CFRP/GFRP 혼성부재의 에너지흡수 특성 (Energy Absorption Characteristics of the Al/CFRP/GFRP Hybrid Member under Quasi-static Axial Compressive Load)

  • 김선규;허욱;임광희;정종안
    • 한국생산제조학회지
    • /
    • 제21권4호
    • /
    • pp.588-592
    • /
    • 2012
  • This study concentrates the effect of hybridisation on the collapse mode and energy absorption for composite cylinders. The static collapse behavior of laminated(Al/CFRP/GFRP) circular-cylindrical composite shell under quasi-static axial compressive load has been investigated experimentally. Eight different hybrids of laminated(Al/CFRP/GFRP) circular-cylindrical composite shell were fabricated by autoclave. Eight types of composites were tested, namely, Al/carbon fiber/epoxy, Al/glass fiber/epoxy, Al/carbon-carbon-glass/epoxy, Al/carbon-glass-carbon/epoxy, Al/carbon-glass-glass/epoxy, Al/glass-glass-carbon/epoxy, Al/glass-carbon-glass/epoxy and Al/glass-carbon-carbon/epoxy. Collpase modes were highly dominated by the effect of hybridisation. The results also showed that the hybrid member with material sequence of Al-glass-carbon-carbon/epoxy exhibited good energy absorption capability.

복합적층 구조부재의 계면수 변화에 따른 에너지흡수특성 (Energy Absorption Characteristics of Composite Laminated Structural Member According to the Interface Number)

  • 황우채;이길성;차천석;정종안;한길영;양인영
    • 한국생산제조학회지
    • /
    • 제20권1호
    • /
    • pp.17-22
    • /
    • 2011
  • Ultimate goals in vehicle design can be summarized as environment-friendliness and safety. Along with these requirements, the importance of natural environment conservation has been focused lately. Therefore, reduced emission from vehicle and improved efficiency has become the top priority projects throughout the world. CFRP(Carbon Fiber Reinforced Plastics) of the advanced composite materials as structure materials for vehicles, has a widely application in lightweight structural materials of air planes, ships and automobiles because of high strength and stiffness. This study is to investigate the energy absorption characteristics of CFRP hat-shaped section members under the axial impact collapse test. The CFRP hat-shaped section members which manufactured from unidirectional prepreg sheets were made of 8plies. The axial impact collapse tests were carried out for each section members. The collapse mode and energy absorption characteristics were analyzed for CFRP hat-shaped section member according to the interface numbers(2, 3, 4, 6 and 7).

차체 경량화를 위한 CFRP 복합구조부재의 충격압궤모드에 관한 연구 (A Study on Impact Collapse Modes of Composite Structural Members using Carbon Fiber Reinforced Plastics for Car Body Lightweight)

  • 황우채;최영민;임광희;차천석;양용준;양인영
    • 한국안전학회지
    • /
    • 제29권5호
    • /
    • pp.7-14
    • /
    • 2014
  • This study aimed to develop members with the optimum impact characteristics to ensure a protected space for passengers in the case of automobile collisions. Accordingly, these members were fabricated to provide sufficient rigidity and safety to the passenger room structure and to absorb large amounts of energy during collision. In particular, CFRP members were fabricated with different section shapes such as square and single- and double-hat shapes. Next, their impact collapse characteristics and collapse modes were quantitatively analyzed according to the changes in section shapes and stacking angles. This analysis was performed to obtain design data that can be applied in the development of optimum lightweight members for automobiles.