• Title/Summary/Keyword: 암염돔 하부 영상화

Search Result 3, Processing Time 0.017 seconds

A Study of Waveform Inversion for Improvement of Sub-Salt Migration Image (암염돔 하부 구조의 구조보정 영상 개선을 위한 파형역산 기법 연구)

  • Ha, Wan-Soo;Pyun, Suk-Joon;Son, Woo-Hyun;Shin, Chang-Soo;Ko, Seung-Won;Seo, Young-Tak
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.3
    • /
    • pp.177-183
    • /
    • 2008
  • The sub-salt imaging technique becomes more crucial to detect the hydro-carbonates in petroleum exploration as the target reservoirs get deeper. However, the weak reflections from the sub-salt structures prevent us from obtaining high fidelity sub-salt image. As an effort to overcome this difficulty, we applied the waveform inversion by implementing multi-grid technique to the sub-salt imaging. Through the comparison between the conventional waveform inversion using fixed grid and the multi-grid technique, we confirmed that the waveform inversion using multi-grid technique has advantages over the conventional fixed grid waveform inversion. We showed that the multi-grid technique can complement he velocity estimation result of the waveform inversion for imaging the sub-salt structures, of which velocity model cannot be obtained correctly by the conventional fixed grid waveform inversion.

Prestack Reverse Time Migration for Seismic Reflection data in Block 5, Jeju Basin (제주분지 제 5광구 탄성파자료의 중합전 역시간 구조보정)

  • Ko, Chin-Surk;Jang, Seong-Hyung
    • Economic and Environmental Geology
    • /
    • v.43 no.4
    • /
    • pp.349-358
    • /
    • 2010
  • For imaging complex subsurface structures such as salt dome, faults, thrust belt, and folds, seismic prestack reverse-time migration in depth domain is widely used, which is performed by the cross-correlation of shot-domain wavefield extrapolation with receiver-domain wavefield extrapolation. We apply the prestack reverse-time migration, which had been developed at KIGAM, to the seismic field data set of Block 5 in Jeju basin of Korea continental shelf in order to improve subsurface syncline stratigraphy image of the deep structures under the shot point 8km at the surface. We performed basic data processing for improving S/N ratio in the shot gathers, and constructed a velocity model from stack velocity which was calculated by the iterative velocity spectrum. The syncline structure of the stack image appears as disconnected interfaces due to the diffractions, but the result of the prestack migration shows that the syncline image is improved as seismic energy is concentrated on the geological interfaces.

Seismic wave propagation through surface basalts - implications for coal seismic surveys (지표 현무암을 통해 전파하는 탄성파의 거동 - 석탄 탄성파탐사에 적용)

  • Sun, Weijia;Zhou, Binzhong;Hatherly, Peter;Fu, Li-Yun
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • Seismic reflection surveying is one of the most widely used and effective techniques for coal seam structure delineation and risk mitigation for underground longwall mining. However, the ability of the method can be compromised by the presence of volcanic cover. This problem arises within parts of the Bowen and Sydney Basins of Australia and seismic surveying can be unsuccessful. As a consequence, such areas are less attractive for coal mining. Techniques to improve the success of seismic surveying over basalt flows are needed. In this paper, we use elastic wave-equation-based forward modelling techniques to investigate the effects and characteristics of seismic wave propagation under different settings involving changes in basalt properties, its thickness, lateral extent, relative position to the shot position and various forms of inhomogeneity. The modelling results suggests that: 1) basalts with high impedance contrasts and multiple flows generate strong multiples and weak reflectors; 2) thin basalts have less effect than thick basalts; 3) partial basalt cover has less effect than full basalt cover; 4) low frequency seismic waves (especially at large offsets) have better penetration through the basalt than high frequency waves; and 5) the deeper the coal seams are below basalts of limited extent, the less influence the basalts will have on the wave propagation. In addition to providing insights into the issues that arise when seismic surveying under basalts, these observations suggest that careful management of seismic noise and the acquisition of long-offset seismic data with low-frequency geophones have the potential to improve the seismic results.